3.41/1.81 WORST_CASE(?, O(1)) 3.41/1.81 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.41/1.81 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.41/1.81 3.41/1.81 3.41/1.81 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.41/1.81 3.41/1.81 (0) CpxIntTrs 3.41/1.81 (1) Koat Proof [FINISHED, 133 ms] 3.41/1.81 (2) BOUNDS(1, 1) 3.41/1.81 3.41/1.81 3.41/1.81 ---------------------------------------- 3.41/1.81 3.41/1.81 (0) 3.41/1.81 Obligation: 3.41/1.81 Complexity Int TRS consisting of the following rules: 3.41/1.81 f0(A, B, C, D) -> Com_1(f1(A, B, 2, D)) :|: A >= 0 && 3 >= A && 3 >= B && B >= 0 3.41/1.81 f1(A, B, C, D) -> Com_1(f1(A, B + 1, C, B + 1)) :|: C + A >= 2 * B + 1 && 0 >= 2 3.41/1.81 f1(A, B, C, D) -> Com_1(f1(A, B + 1, C, B + 1)) :|: C + A >= 2 * B + 1 3.41/1.81 f1(A, B, C, D) -> Com_1(f1(A, B - 1, C, B - 1)) :|: 2 * B >= 2 + C + A 3.41/1.81 f1(A, B, C, D) -> Com_1(f1(A, B - 1, C, B - 1)) :|: 2 * B >= 2 + C + A && 0 >= 2 3.41/1.81 f1(A, B, C, D) -> Com_1(f1(A, B, C, B)) :|: 0 >= 1 && 2 * B >= C + A && C + A + 1 >= 2 * B 3.41/1.81 3.41/1.81 The start-symbols are:[f0_4] 3.41/1.81 3.41/1.81 3.41/1.81 ---------------------------------------- 3.41/1.81 3.41/1.81 (1) Koat Proof (FINISHED) 3.41/1.81 YES(?, 23) 3.41/1.81 3.41/1.81 3.41/1.81 3.41/1.81 Initial complexity problem: 3.41/1.81 3.41/1.81 1: T: 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 /\ 0 >= 2 ] 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 /\ 0 >= 2 ] 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, ar_2, ar_1)) [ 0 >= 1 /\ 2*ar_1 >= ar_2 + ar_0 /\ ar_2 + ar_0 + 1 >= 2*ar_1 ] 3.41/1.81 3.41/1.81 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.41/1.81 3.41/1.81 start location: koat_start 3.41/1.81 3.41/1.81 leaf cost: 0 3.41/1.81 3.41/1.81 3.41/1.81 3.41/1.81 Testing for reachability in the complexity graph removes the following transitions from problem 1: 3.41/1.81 3.41/1.81 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 /\ 0 >= 2 ] 3.41/1.81 3.41/1.81 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 /\ 0 >= 2 ] 3.41/1.81 3.41/1.81 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, ar_2, ar_1)) [ 0 >= 1 /\ 2*ar_1 >= ar_2 + ar_0 /\ ar_2 + ar_0 + 1 >= 2*ar_1 ] 3.41/1.81 3.41/1.81 We thus obtain the following problem: 3.41/1.81 3.41/1.81 2: T: 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.41/1.81 3.41/1.81 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.41/1.81 3.41/1.81 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.41/1.81 3.41/1.81 start location: koat_start 3.41/1.81 3.41/1.81 leaf cost: 0 3.41/1.81 3.41/1.82 3.41/1.82 3.41/1.82 Repeatedly propagating knowledge in problem 2 produces the following problem: 3.41/1.82 3.41/1.82 3: T: 3.41/1.82 3.41/1.82 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.41/1.82 3.41/1.82 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.41/1.82 3.41/1.82 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.41/1.82 3.41/1.82 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.41/1.82 3.41/1.82 start location: koat_start 3.41/1.82 3.41/1.82 leaf cost: 0 3.41/1.82 3.41/1.82 3.41/1.82 3.41/1.82 A polynomial rank function with 3.41/1.82 3.41/1.82 Pol(f1) = -V_1 + 2*V_2 - V_3 3.41/1.82 3.41/1.82 and size complexities 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-0) = ar_0 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-1) = ar_1 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-2) = ar_2 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-3) = ar_3 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-0) = 3 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-1) = 3 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-2) = 2 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-3) = ar_3 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-0) = 3 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-1) = ? 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-2) = 2 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-3) = ? 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-0) = 3 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-1) = ? 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-2) = 2 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-3) = ? 3.41/1.82 3.41/1.82 orients the transitions 3.41/1.82 3.41/1.82 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.41/1.82 3.41/1.82 weakly and the transition 3.41/1.82 3.41/1.82 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.41/1.82 3.41/1.82 strictly and produces the following problem: 3.41/1.82 3.41/1.82 4: T: 3.41/1.82 3.41/1.82 (Comp: 11, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.41/1.82 3.41/1.82 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.41/1.82 3.41/1.82 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.41/1.82 3.41/1.82 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.41/1.82 3.41/1.82 start location: koat_start 3.41/1.82 3.41/1.82 leaf cost: 0 3.41/1.82 3.41/1.82 3.41/1.82 3.41/1.82 A polynomial rank function with 3.41/1.82 3.41/1.82 Pol(f1) = V_1 - 2*V_2 + V_3 3.41/1.82 3.41/1.82 and size complexities 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-0) = ar_0 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-1) = ar_1 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-2) = ar_2 3.41/1.82 3.41/1.82 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-3) = ar_3 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-0) = 3 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-1) = 3 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-2) = 2 3.41/1.82 3.41/1.82 S("f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-3) = ar_3 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-0) = 3 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-1) = ? 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-2) = 2 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-3) = ? 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-0) = 3 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-1) = 14 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-2) = 2 3.41/1.82 3.41/1.82 S("f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-3) = 15 3.41/1.82 3.41/1.82 orients the transitions 3.41/1.82 3.41/1.82 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.41/1.82 3.41/1.82 weakly and the transition 3.41/1.82 3.41/1.82 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.41/1.82 3.41/1.82 strictly and produces the following problem: 3.41/1.82 3.41/1.82 5: T: 3.41/1.82 3.41/1.82 (Comp: 11, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 - 1, ar_2, ar_1 - 1)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.41/1.82 3.41/1.82 (Comp: 11, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1 + 1, ar_2, ar_1 + 1)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.41/1.82 3.41/1.82 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, 2, ar_3)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.41/1.82 3.41/1.82 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.41/1.82 3.41/1.82 start location: koat_start 3.41/1.82 3.41/1.82 leaf cost: 0 3.41/1.82 3.41/1.82 3.41/1.82 3.41/1.82 Complexity upper bound 23 3.41/1.82 3.41/1.82 3.41/1.82 3.41/1.82 Time: 0.115 sec (SMT: 0.108 sec) 3.41/1.82 3.41/1.82 3.41/1.82 ---------------------------------------- 3.41/1.82 3.41/1.82 (2) 3.41/1.82 BOUNDS(1, 1) 3.88/1.83 EOF