3.75/1.76 WORST_CASE(?, O(1)) 3.75/1.77 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.75/1.77 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.75/1.77 3.75/1.77 3.75/1.77 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.75/1.77 3.75/1.77 (0) CpxIntTrs 3.75/1.77 (1) Koat Proof [FINISHED, 67 ms] 3.75/1.77 (2) BOUNDS(1, 1) 3.75/1.77 3.75/1.77 3.75/1.77 ---------------------------------------- 3.75/1.77 3.75/1.77 (0) 3.75/1.77 Obligation: 3.75/1.77 Complexity Int TRS consisting of the following rules: 3.75/1.77 f0(A, B, C, D, E) -> Com_1(f4(0, B, C, D, E)) :|: TRUE 3.75/1.77 f20(A, B, C, D, E) -> Com_1(f20(A, B + 1, B, D, E)) :|: 199 >= B 3.75/1.77 f20(A, B, C, D, E) -> Com_1(f31(A, B, C, D, E)) :|: B >= 200 3.75/1.77 f4(A, B, C, D, E) -> Com_1(f4(A + 1, B, C, A, A)) :|: 99 >= A 3.75/1.77 f4(A, B, C, D, E) -> Com_1(f20(A, 100, C, D, E)) :|: A >= 100 3.75/1.77 3.75/1.77 The start-symbols are:[f0_5] 3.75/1.77 3.75/1.77 3.75/1.77 ---------------------------------------- 3.75/1.77 3.75/1.77 (1) Koat Proof (FINISHED) 3.75/1.77 YES(?, 205) 3.75/1.77 3.75/1.77 3.75/1.77 3.75/1.77 Initial complexity problem: 3.75/1.77 3.75/1.77 1: T: 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f31(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.75/1.77 3.75/1.77 start location: koat_start 3.75/1.77 3.75/1.77 leaf cost: 0 3.75/1.77 3.75/1.77 3.75/1.77 3.75/1.77 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.75/1.77 3.75/1.77 2: T: 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f31(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.75/1.77 3.75/1.77 start location: koat_start 3.75/1.77 3.75/1.77 leaf cost: 0 3.75/1.77 3.75/1.77 3.75/1.77 3.75/1.77 A polynomial rank function with 3.75/1.77 3.75/1.77 Pol(f0) = 2 3.75/1.77 3.75/1.77 Pol(f4) = 2 3.75/1.77 3.75/1.77 Pol(f20) = 1 3.75/1.77 3.75/1.77 Pol(f31) = 0 3.75/1.77 3.75/1.77 Pol(koat_start) = 2 3.75/1.77 3.75/1.77 orients all transitions weakly and the transitions 3.75/1.77 3.75/1.77 f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.75/1.77 3.75/1.77 f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f31(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.75/1.77 3.75/1.77 strictly and produces the following problem: 3.75/1.77 3.75/1.77 3: T: 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.75/1.77 3.75/1.77 (Comp: 2, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f31(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.75/1.77 3.75/1.77 (Comp: 2, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.75/1.77 3.75/1.77 start location: koat_start 3.75/1.77 3.75/1.77 leaf cost: 0 3.75/1.77 3.75/1.77 3.75/1.77 3.75/1.77 A polynomial rank function with 3.75/1.77 3.75/1.77 Pol(f0) = 100 3.75/1.77 3.75/1.77 Pol(f4) = 100 3.75/1.77 3.75/1.77 Pol(f20) = -V_2 + 200 3.75/1.77 3.75/1.77 Pol(f31) = -V_2 3.75/1.77 3.75/1.77 Pol(koat_start) = 100 3.75/1.77 3.75/1.77 orients all transitions weakly and the transition 3.75/1.77 3.75/1.77 f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.75/1.77 3.75/1.77 strictly and produces the following problem: 3.75/1.77 3.75/1.77 4: T: 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.75/1.77 3.75/1.77 (Comp: 100, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.75/1.77 3.75/1.77 (Comp: 2, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f31(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.75/1.77 3.75/1.77 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.75/1.77 3.75/1.77 (Comp: 2, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.75/1.77 3.75/1.77 start location: koat_start 3.75/1.77 3.75/1.77 leaf cost: 0 3.75/1.77 3.75/1.77 3.75/1.77 3.75/1.77 A polynomial rank function with 3.75/1.77 3.75/1.77 Pol(f0) = 100 3.75/1.77 3.75/1.77 Pol(f4) = -V_1 + 100 3.75/1.77 3.75/1.77 Pol(f20) = -V_1 3.75/1.77 3.75/1.77 Pol(f31) = -V_1 3.75/1.77 3.75/1.77 Pol(koat_start) = 100 3.75/1.77 3.75/1.77 orients all transitions weakly and the transition 3.75/1.77 3.75/1.77 f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.75/1.77 3.75/1.77 strictly and produces the following problem: 3.75/1.77 3.75/1.77 5: T: 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.75/1.77 3.75/1.77 (Comp: 100, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.75/1.77 3.75/1.77 (Comp: 2, Cost: 1) f20(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f31(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.75/1.77 3.75/1.77 (Comp: 100, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.75/1.77 3.75/1.77 (Comp: 2, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f20(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.75/1.77 3.75/1.77 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.75/1.77 3.75/1.77 start location: koat_start 3.75/1.77 3.75/1.77 leaf cost: 0 3.75/1.77 3.75/1.77 3.75/1.77 3.75/1.77 Complexity upper bound 205 3.75/1.77 3.75/1.77 3.75/1.77 3.75/1.77 Time: 0.110 sec (SMT: 0.100 sec) 3.75/1.77 3.75/1.77 3.75/1.77 ---------------------------------------- 3.75/1.77 3.75/1.77 (2) 3.75/1.77 BOUNDS(1, 1) 3.75/1.79 EOF