3.97/1.93 WORST_CASE(Omega(n^1), O(n^1)) 3.97/1.94 proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat 3.97/1.94 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.97/1.94 3.97/1.94 3.97/1.94 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 3.97/1.94 3.97/1.94 (0) CpxIntTrs 3.97/1.94 (1) Koat Proof [FINISHED, 132 ms] 3.97/1.94 (2) BOUNDS(1, n^1) 3.97/1.94 (3) Loat Proof [FINISHED, 198 ms] 3.97/1.94 (4) BOUNDS(n^1, INF) 3.97/1.94 3.97/1.94 3.97/1.94 ---------------------------------------- 3.97/1.94 3.97/1.94 (0) 3.97/1.94 Obligation: 3.97/1.94 Complexity Int TRS consisting of the following rules: 3.97/1.94 f2(A, B, C, D, E, F) -> Com_1(f2(-(1) + A, -(1) + B, A, B, -(2) + A, F)) :|: A >= 1 && B >= 1 3.97/1.94 f3(A, B, C, D, E, F) -> Com_1(f2(A, B, C, D, E, F)) :|: TRUE 3.97/1.94 f2(A, B, C, D, E, F) -> Com_1(f4(A, G, C, D, E, H)) :|: 0 >= B && 0 >= G 3.97/1.94 f2(A, B, C, D, E, F) -> Com_1(f4(A, B, C, D, E, H)) :|: B >= 1 && 0 >= A 3.97/1.94 3.97/1.94 The start-symbols are:[f3_6] 3.97/1.94 3.97/1.94 3.97/1.94 ---------------------------------------- 3.97/1.94 3.97/1.94 (1) Koat Proof (FINISHED) 3.97/1.94 YES(?, ar_0 + 3) 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Initial complexity problem: 3.97/1.94 3.97/1.94 1: T: 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 3.97/1.94 3.97/1.94 start location: koat_start 3.97/1.94 3.97/1.94 leaf cost: 0 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.97/1.94 3.97/1.94 2: T: 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 3.97/1.94 3.97/1.94 start location: koat_start 3.97/1.94 3.97/1.94 leaf cost: 0 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 A polynomial rank function with 3.97/1.94 3.97/1.94 Pol(f2) = 1 3.97/1.94 3.97/1.94 Pol(f3) = 1 3.97/1.94 3.97/1.94 Pol(f4) = 0 3.97/1.94 3.97/1.94 Pol(koat_start) = 1 3.97/1.94 3.97/1.94 orients all transitions weakly and the transitions 3.97/1.94 3.97/1.94 f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] 3.97/1.94 3.97/1.94 f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] 3.97/1.94 3.97/1.94 strictly and produces the following problem: 3.97/1.94 3.97/1.94 3: T: 3.97/1.94 3.97/1.94 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 3.97/1.94 3.97/1.94 start location: koat_start 3.97/1.94 3.97/1.94 leaf cost: 0 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 A polynomial rank function with 3.97/1.94 3.97/1.94 Pol(f2) = V_1 3.97/1.94 3.97/1.94 Pol(f3) = V_1 3.97/1.94 3.97/1.94 Pol(f4) = V_1 3.97/1.94 3.97/1.94 Pol(koat_start) = V_1 3.97/1.94 3.97/1.94 orients all transitions weakly and the transition 3.97/1.94 3.97/1.94 f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] 3.97/1.94 3.97/1.94 strictly and produces the following problem: 3.97/1.94 3.97/1.94 4: T: 3.97/1.94 3.97/1.94 (Comp: ar_0, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] 3.97/1.94 3.97/1.94 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 3.97/1.94 3.97/1.94 start location: koat_start 3.97/1.94 3.97/1.94 leaf cost: 0 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Complexity upper bound ar_0 + 3 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Time: 0.111 sec (SMT: 0.103 sec) 3.97/1.94 3.97/1.94 3.97/1.94 ---------------------------------------- 3.97/1.94 3.97/1.94 (2) 3.97/1.94 BOUNDS(1, n^1) 3.97/1.94 3.97/1.94 ---------------------------------------- 3.97/1.94 3.97/1.94 (3) Loat Proof (FINISHED) 3.97/1.94 3.97/1.94 3.97/1.94 ### Pre-processing the ITS problem ### 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Initial linear ITS problem 3.97/1.94 3.97/1.94 Start location: f3 3.97/1.94 3.97/1.94 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 3.97/1.94 3.97/1.94 2: f2 -> f4 : B'=free, F'=free_1, [ 0>=B && 0>=free ], cost: 1 3.97/1.94 3.97/1.94 3: f2 -> f4 : F'=free_2, [ B>=1 && 0>=A ], cost: 1 3.97/1.94 3.97/1.94 1: f3 -> f2 : [], cost: 1 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Removed unreachable and leaf rules: 3.97/1.94 3.97/1.94 Start location: f3 3.97/1.94 3.97/1.94 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 3.97/1.94 3.97/1.94 1: f3 -> f2 : [], cost: 1 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 ### Simplification by acceleration and chaining ### 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Accelerating simple loops of location 0. 3.97/1.94 3.97/1.94 Accelerating the following rules: 3.97/1.94 3.97/1.94 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Accelerated rule 0 with metering function B (after adding A>=B), yielding the new rule 4. 3.97/1.94 3.97/1.94 Accelerated rule 0 with metering function A (after adding A<=B), yielding the new rule 5. 3.97/1.94 3.97/1.94 Removing the simple loops: 0. 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Accelerated all simple loops using metering functions (where possible): 3.97/1.94 3.97/1.94 Start location: f3 3.97/1.94 3.97/1.94 4: f2 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: B 3.97/1.94 3.97/1.94 5: f2 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: A 3.97/1.94 3.97/1.94 1: f3 -> f2 : [], cost: 1 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Chained accelerated rules (with incoming rules): 3.97/1.94 3.97/1.94 Start location: f3 3.97/1.94 3.97/1.94 1: f3 -> f2 : [], cost: 1 3.97/1.94 3.97/1.94 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: 1+B 3.97/1.94 3.97/1.94 7: f3 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: 1+A 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Removed unreachable locations (and leaf rules with constant cost): 3.97/1.94 3.97/1.94 Start location: f3 3.97/1.94 3.97/1.94 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: 1+B 3.97/1.94 3.97/1.94 7: f3 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: 1+A 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 ### Computing asymptotic complexity ### 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Fully simplified ITS problem 3.97/1.94 3.97/1.94 Start location: f3 3.97/1.94 3.97/1.94 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: 1+B 3.97/1.94 3.97/1.94 7: f3 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: 1+A 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Computing asymptotic complexity for rule 6 3.97/1.94 3.97/1.94 Simplified the guard: 3.97/1.94 3.97/1.94 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ B>=1 && A>=B ], cost: 1+B 3.97/1.94 3.97/1.94 Solved the limit problem by the following transformations: 3.97/1.94 3.97/1.94 Created initial limit problem: 3.97/1.94 3.97/1.94 1+B (+), 1+A-B (+/+!), B (+/+!) [not solved] 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 removing all constraints (solved by SMT) 3.97/1.94 3.97/1.94 resulting limit problem: [solved] 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 applying transformation rule (C) using substitution {A==n,B==n} 3.97/1.94 3.97/1.94 resulting limit problem: 3.97/1.94 3.97/1.94 [solved] 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Solution: 3.97/1.94 3.97/1.94 A / n 3.97/1.94 3.97/1.94 B / n 3.97/1.94 3.97/1.94 Resulting cost 1+n has complexity: Poly(n^1) 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Found new complexity Poly(n^1). 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 Obtained the following overall complexity (w.r.t. the length of the input n): 3.97/1.94 3.97/1.94 Complexity: Poly(n^1) 3.97/1.94 3.97/1.94 Cpx degree: 1 3.97/1.94 3.97/1.94 Solved cost: 1+n 3.97/1.94 3.97/1.94 Rule cost: 1+B 3.97/1.94 3.97/1.94 Rule guard: [ B>=1 && A>=B ] 3.97/1.94 3.97/1.94 3.97/1.94 3.97/1.94 WORST_CASE(Omega(n^1),?) 3.97/1.94 3.97/1.94 3.97/1.94 ---------------------------------------- 3.97/1.94 3.97/1.94 (4) 3.97/1.94 BOUNDS(n^1, INF) 3.97/1.96 EOF