3.46/1.66 WORST_CASE(?, O(1)) 3.46/1.67 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.46/1.67 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.46/1.67 3.46/1.67 3.46/1.67 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.46/1.67 3.46/1.67 (0) CpxIntTrs 3.46/1.67 (1) Koat Proof [FINISHED, 8 ms] 3.46/1.67 (2) BOUNDS(1, 1) 3.46/1.67 3.46/1.67 3.46/1.67 ---------------------------------------- 3.46/1.67 3.46/1.67 (0) 3.46/1.67 Obligation: 3.46/1.67 Complexity Int TRS consisting of the following rules: 3.46/1.67 f0(A, B, C) -> Com_1(f8(0, 10, 0)) :|: TRUE 3.46/1.67 f8(A, B, C) -> Com_1(f8(A + 2, B, C + 1)) :|: B >= C + 1 3.46/1.67 f8(A, B, C) -> Com_1(f6(A, B, C)) :|: 2 * B >= A + 1 && C >= B 3.46/1.67 f8(A, B, C) -> Com_1(f6(A, B, C)) :|: A >= 2 * B && C >= B 3.46/1.67 3.46/1.67 The start-symbols are:[f0_3] 3.46/1.67 3.46/1.67 3.46/1.67 ---------------------------------------- 3.46/1.67 3.46/1.67 (1) Koat Proof (FINISHED) 3.46/1.67 YES(?, 13) 3.46/1.67 3.46/1.67 3.46/1.67 3.46/1.67 Initial complexity problem: 3.46/1.67 3.46/1.67 1: T: 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f8(0, 10, 0)) 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 2, ar_1, ar_2 + 1)) [ ar_1 >= ar_2 + 1 ] 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ 2*ar_1 >= ar_0 + 1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ ar_0 >= 2*ar_1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.46/1.67 3.46/1.67 start location: koat_start 3.46/1.67 3.46/1.67 leaf cost: 0 3.46/1.67 3.46/1.67 3.46/1.67 3.46/1.67 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.46/1.67 3.46/1.67 2: T: 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f8(0, 10, 0)) 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 2, ar_1, ar_2 + 1)) [ ar_1 >= ar_2 + 1 ] 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ 2*ar_1 >= ar_0 + 1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ ar_0 >= 2*ar_1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.46/1.67 3.46/1.67 start location: koat_start 3.46/1.67 3.46/1.67 leaf cost: 0 3.46/1.67 3.46/1.67 3.46/1.67 3.46/1.67 A polynomial rank function with 3.46/1.67 3.46/1.67 Pol(f0) = 1 3.46/1.67 3.46/1.67 Pol(f8) = 1 3.46/1.67 3.46/1.67 Pol(f6) = 0 3.46/1.67 3.46/1.67 Pol(koat_start) = 1 3.46/1.67 3.46/1.67 orients all transitions weakly and the transitions 3.46/1.67 3.46/1.67 f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ 2*ar_1 >= ar_0 + 1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ ar_0 >= 2*ar_1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 strictly and produces the following problem: 3.46/1.67 3.46/1.67 3: T: 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f8(0, 10, 0)) 3.46/1.67 3.46/1.67 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 2, ar_1, ar_2 + 1)) [ ar_1 >= ar_2 + 1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ 2*ar_1 >= ar_0 + 1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ ar_0 >= 2*ar_1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.46/1.67 3.46/1.67 start location: koat_start 3.46/1.67 3.46/1.67 leaf cost: 0 3.46/1.67 3.46/1.67 3.46/1.67 3.46/1.67 A polynomial rank function with 3.46/1.67 3.46/1.67 Pol(f0) = 10 3.46/1.67 3.46/1.67 Pol(f8) = V_2 - V_3 3.46/1.67 3.46/1.67 Pol(f6) = V_2 - V_3 3.46/1.67 3.46/1.67 Pol(koat_start) = 10 3.46/1.67 3.46/1.67 orients all transitions weakly and the transition 3.46/1.67 3.46/1.67 f8(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 2, ar_1, ar_2 + 1)) [ ar_1 >= ar_2 + 1 ] 3.46/1.67 3.46/1.67 strictly and produces the following problem: 3.46/1.67 3.46/1.67 4: T: 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f8(0, 10, 0)) 3.46/1.67 3.46/1.67 (Comp: 10, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 2, ar_1, ar_2 + 1)) [ ar_1 >= ar_2 + 1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ 2*ar_1 >= ar_0 + 1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1, ar_2)) [ ar_0 >= 2*ar_1 /\ ar_2 >= ar_1 ] 3.46/1.67 3.46/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.46/1.67 3.46/1.67 start location: koat_start 3.46/1.67 3.46/1.67 leaf cost: 0 3.46/1.67 3.46/1.67 3.46/1.67 3.46/1.67 Complexity upper bound 13 3.46/1.67 3.46/1.67 3.46/1.67 3.46/1.67 Time: 0.045 sec (SMT: 0.041 sec) 3.46/1.67 3.46/1.67 3.46/1.67 ---------------------------------------- 3.46/1.67 3.46/1.67 (2) 3.46/1.67 BOUNDS(1, 1) 3.58/1.70 EOF