4.50/2.13 WORST_CASE(Omega(n^1), O(n^1)) 4.50/2.14 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.50/2.14 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.50/2.14 4.50/2.14 4.50/2.14 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.50/2.14 4.50/2.14 (0) CpxIntTrs 4.50/2.14 (1) Koat Proof [FINISHED, 101 ms] 4.50/2.14 (2) BOUNDS(1, n^1) 4.50/2.14 (3) Loat Proof [FINISHED, 506 ms] 4.50/2.14 (4) BOUNDS(n^1, INF) 4.50/2.14 4.50/2.14 4.50/2.14 ---------------------------------------- 4.50/2.14 4.50/2.14 (0) 4.50/2.14 Obligation: 4.50/2.14 Complexity Int TRS consisting of the following rules: 4.50/2.14 start(A, B, C, D) -> Com_1(stop1(A, B, C, D)) :|: A >= 0 && B >= 0 && C >= 0 && D >= 0 && D <= 0 4.50/2.14 start(A, B, C, D) -> Com_1(cont1(A, B, C, D)) :|: D >= 1 && A >= 0 && B >= 0 && C >= 0 && D >= 0 && A >= D 4.50/2.14 cont1(A, B, C, D) -> Com_1(stop2(A, B, 1, D - 1)) :|: D >= 1 && B >= 0 && A >= D && C >= 0 && C <= 0 4.50/2.14 cont1(A, B, C, D) -> Com_1(a(A, B, C - 1, D)) :|: C >= 1 && D >= 1 && C >= 0 && B >= 0 && A >= D 4.50/2.14 a(A, B, C, D) -> Com_1(b(A, B, E, D - 1)) :|: A >= D && B >= 0 && C >= 0 && D >= 1 4.50/2.14 b(A, B, C, D) -> Com_1(start(A, B, C, D)) :|: C >= 0 && D >= 0 && B >= 0 && A >= D + 1 4.50/2.14 b(A, B, C, D) -> Com_1(stop3(A, B, C, D)) :|: 0 >= C + 1 && D >= 0 && B >= 0 && A >= D + 1 4.50/2.14 start0(A, B, C, D) -> Com_1(start(A, B, B, A)) :|: A >= 0 && B >= 0 4.50/2.14 4.50/2.14 The start-symbols are:[start0_4] 4.50/2.14 4.50/2.14 4.50/2.14 ---------------------------------------- 4.50/2.14 4.50/2.14 (1) Koat Proof (FINISHED) 4.50/2.14 YES(?, 16*ar_0 + 4) 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Initial complexity problem: 4.50/2.14 4.50/2.14 1: T: 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop1(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 = 0 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(cont1(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= 1 /\ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop2(ar_0, ar_1, 1, ar_3 - 1)) [ ar_3 >= 1 /\ ar_1 >= 0 /\ ar_0 >= ar_3 /\ ar_2 = 0 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(a(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= 1 /\ ar_3 >= 1 /\ ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) a(ar_0, ar_1, ar_2, ar_3) -> Com_1(b(ar_0, ar_1, e, ar_3 - 1)) [ ar_0 >= ar_3 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 1 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop3(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_1, ar_0)) [ ar_0 >= 0 /\ ar_1 >= 0 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.50/2.14 4.50/2.14 start location: koat_start 4.50/2.14 4.50/2.14 leaf cost: 0 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.50/2.14 4.50/2.14 2: T: 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop1(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 = 0 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(cont1(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= 1 /\ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop2(ar_0, ar_1, 1, ar_3 - 1)) [ ar_3 >= 1 /\ ar_1 >= 0 /\ ar_0 >= ar_3 /\ ar_2 = 0 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(a(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= 1 /\ ar_3 >= 1 /\ ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) a(ar_0, ar_1, ar_2, ar_3) -> Com_1(b(ar_0, ar_1, e, ar_3 - 1)) [ ar_0 >= ar_3 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 1 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop3(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_1, ar_0)) [ ar_0 >= 0 /\ ar_1 >= 0 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.50/2.14 4.50/2.14 start location: koat_start 4.50/2.14 4.50/2.14 leaf cost: 0 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 A polynomial rank function with 4.50/2.14 4.50/2.14 Pol(start) = 1 4.50/2.14 4.50/2.14 Pol(stop1) = 0 4.50/2.14 4.50/2.14 Pol(cont1) = 1 4.50/2.14 4.50/2.14 Pol(stop2) = 0 4.50/2.14 4.50/2.14 Pol(a) = 1 4.50/2.14 4.50/2.14 Pol(b) = 1 4.50/2.14 4.50/2.14 Pol(stop3) = 0 4.50/2.14 4.50/2.14 Pol(start0) = 1 4.50/2.14 4.50/2.14 Pol(koat_start) = 1 4.50/2.14 4.50/2.14 orients all transitions weakly and the transitions 4.50/2.14 4.50/2.14 start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop1(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 = 0 ] 4.50/2.14 4.50/2.14 cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop2(ar_0, ar_1, 1, ar_3 - 1)) [ ar_3 >= 1 /\ ar_1 >= 0 /\ ar_0 >= ar_3 /\ ar_2 = 0 ] 4.50/2.14 4.50/2.14 b(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop3(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 strictly and produces the following problem: 4.50/2.14 4.50/2.14 3: T: 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop1(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 = 0 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(cont1(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= 1 /\ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop2(ar_0, ar_1, 1, ar_3 - 1)) [ ar_3 >= 1 /\ ar_1 >= 0 /\ ar_0 >= ar_3 /\ ar_2 = 0 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(a(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= 1 /\ ar_3 >= 1 /\ ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) a(ar_0, ar_1, ar_2, ar_3) -> Com_1(b(ar_0, ar_1, e, ar_3 - 1)) [ ar_0 >= ar_3 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 1 ] 4.50/2.14 4.50/2.14 (Comp: ?, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop3(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_1, ar_0)) [ ar_0 >= 0 /\ ar_1 >= 0 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.50/2.14 4.50/2.14 start location: koat_start 4.50/2.14 4.50/2.14 leaf cost: 0 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 A polynomial rank function with 4.50/2.14 4.50/2.14 Pol(start) = 4*V_4 4.50/2.14 4.50/2.14 Pol(stop1) = 4*V_4 4.50/2.14 4.50/2.14 Pol(cont1) = 4*V_4 - 1 4.50/2.14 4.50/2.14 Pol(stop2) = 4*V_4 4.50/2.14 4.50/2.14 Pol(a) = 4*V_4 - 2 4.50/2.14 4.50/2.14 Pol(b) = 4*V_4 + 1 4.50/2.14 4.50/2.14 Pol(stop3) = 4*V_4 4.50/2.14 4.50/2.14 Pol(start0) = 4*V_1 4.50/2.14 4.50/2.14 Pol(koat_start) = 4*V_1 4.50/2.14 4.50/2.14 orients all transitions weakly and the transitions 4.50/2.14 4.50/2.14 start(ar_0, ar_1, ar_2, ar_3) -> Com_1(cont1(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= 1 /\ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(a(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= 1 /\ ar_3 >= 1 /\ ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 b(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 a(ar_0, ar_1, ar_2, ar_3) -> Com_1(b(ar_0, ar_1, e, ar_3 - 1)) [ ar_0 >= ar_3 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 1 ] 4.50/2.14 4.50/2.14 strictly and produces the following problem: 4.50/2.14 4.50/2.14 4: T: 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop1(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 = 0 ] 4.50/2.14 4.50/2.14 (Comp: 4*ar_0, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(cont1(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= 1 /\ ar_0 >= 0 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop2(ar_0, ar_1, 1, ar_3 - 1)) [ ar_3 >= 1 /\ ar_1 >= 0 /\ ar_0 >= ar_3 /\ ar_2 = 0 ] 4.50/2.14 4.50/2.14 (Comp: 4*ar_0, Cost: 1) cont1(ar_0, ar_1, ar_2, ar_3) -> Com_1(a(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= 1 /\ ar_3 >= 1 /\ ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 ] 4.50/2.14 4.50/2.14 (Comp: 4*ar_0, Cost: 1) a(ar_0, ar_1, ar_2, ar_3) -> Com_1(b(ar_0, ar_1, e, ar_3 - 1)) [ ar_0 >= ar_3 /\ ar_1 >= 0 /\ ar_2 >= 0 /\ ar_3 >= 1 ] 4.50/2.14 4.50/2.14 (Comp: 4*ar_0, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= 0 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) b(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop3(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 /\ ar_3 >= 0 /\ ar_1 >= 0 /\ ar_0 >= ar_3 + 1 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_1, ar_1, ar_0)) [ ar_0 >= 0 /\ ar_1 >= 0 ] 4.50/2.14 4.50/2.14 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.50/2.14 4.50/2.14 start location: koat_start 4.50/2.14 4.50/2.14 leaf cost: 0 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Complexity upper bound 16*ar_0 + 4 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Time: 0.150 sec (SMT: 0.138 sec) 4.50/2.14 4.50/2.14 4.50/2.14 ---------------------------------------- 4.50/2.14 4.50/2.14 (2) 4.50/2.14 BOUNDS(1, n^1) 4.50/2.14 4.50/2.14 ---------------------------------------- 4.50/2.14 4.50/2.14 (3) Loat Proof (FINISHED) 4.50/2.14 4.50/2.14 4.50/2.14 ### Pre-processing the ITS problem ### 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Initial linear ITS problem 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 0: start -> stop1 : [ A>=0 && B>=0 && C>=0 && D==0 ], cost: 1 4.50/2.14 4.50/2.14 1: start -> cont1 : [ D>=1 && A>=0 && B>=0 && C>=0 && D>=0 && A>=D ], cost: 1 4.50/2.14 4.50/2.14 2: cont1 -> stop2 : C'=1, D'=-1+D, [ D>=1 && B>=0 && A>=D && C==0 ], cost: 1 4.50/2.14 4.50/2.14 3: cont1 -> a : C'=-1+C, [ C>=1 && D>=1 && C>=0 && B>=0 && A>=D ], cost: 1 4.50/2.14 4.50/2.14 4: a -> b : C'=free, D'=-1+D, [ A>=D && B>=0 && C>=0 && D>=1 ], cost: 1 4.50/2.14 4.50/2.14 5: b -> start : [ C>=0 && D>=0 && B>=0 && A>=1+D ], cost: 1 4.50/2.14 4.50/2.14 6: b -> stop3 : [ 0>=1+C && D>=0 && B>=0 && A>=1+D ], cost: 1 4.50/2.14 4.50/2.14 7: start0 -> start : C'=B, D'=A, [ A>=0 && B>=0 ], cost: 1 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Removed unreachable and leaf rules: 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 1: start -> cont1 : [ D>=1 && A>=0 && B>=0 && C>=0 && D>=0 && A>=D ], cost: 1 4.50/2.14 4.50/2.14 3: cont1 -> a : C'=-1+C, [ C>=1 && D>=1 && C>=0 && B>=0 && A>=D ], cost: 1 4.50/2.14 4.50/2.14 4: a -> b : C'=free, D'=-1+D, [ A>=D && B>=0 && C>=0 && D>=1 ], cost: 1 4.50/2.14 4.50/2.14 5: b -> start : [ C>=0 && D>=0 && B>=0 && A>=1+D ], cost: 1 4.50/2.14 4.50/2.14 7: start0 -> start : C'=B, D'=A, [ A>=0 && B>=0 ], cost: 1 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Simplified all rules, resulting in: 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 1: start -> cont1 : [ D>=1 && A>=0 && B>=0 && C>=0 && A>=D ], cost: 1 4.50/2.14 4.50/2.14 3: cont1 -> a : C'=-1+C, [ C>=1 && D>=1 && B>=0 && A>=D ], cost: 1 4.50/2.14 4.50/2.14 4: a -> b : C'=free, D'=-1+D, [ A>=D && B>=0 && C>=0 && D>=1 ], cost: 1 4.50/2.14 4.50/2.14 5: b -> start : [ C>=0 && D>=0 && B>=0 && A>=1+D ], cost: 1 4.50/2.14 4.50/2.14 7: start0 -> start : C'=B, D'=A, [ A>=0 && B>=0 ], cost: 1 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 ### Simplification by acceleration and chaining ### 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Eliminated locations (on linear paths): 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 10: start -> start : C'=free, D'=-1+D, [ D>=1 && A>=0 && B>=0 && A>=D && C>=1 && free>=0 ], cost: 4 4.50/2.14 4.50/2.14 7: start0 -> start : C'=B, D'=A, [ A>=0 && B>=0 ], cost: 1 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Accelerating simple loops of location 0. 4.50/2.14 4.50/2.14 Accelerating the following rules: 4.50/2.14 4.50/2.14 10: start -> start : C'=free, D'=-1+D, [ D>=1 && A>=0 && B>=0 && A>=D && C>=1 && free>=0 ], cost: 4 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Accelerated rule 10 with metering function D (after strengthening guard), yielding the new rule 11. 4.50/2.14 4.50/2.14 Removing the simple loops:. 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Accelerated all simple loops using metering functions (where possible): 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 10: start -> start : C'=free, D'=-1+D, [ D>=1 && A>=0 && B>=0 && A>=D && C>=1 && free>=0 ], cost: 4 4.50/2.14 4.50/2.14 11: start -> start : C'=free, D'=0, [ D>=1 && A>=0 && B>=0 && A>=D && C>=1 && free>=1 ], cost: 4*D 4.50/2.14 4.50/2.14 7: start0 -> start : C'=B, D'=A, [ A>=0 && B>=0 ], cost: 1 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Chained accelerated rules (with incoming rules): 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 7: start0 -> start : C'=B, D'=A, [ A>=0 && B>=0 ], cost: 1 4.50/2.14 4.50/2.14 12: start0 -> start : C'=free, D'=-1+A, [ A>=1 && B>=1 && free>=0 ], cost: 5 4.50/2.14 4.50/2.14 13: start0 -> start : C'=free, D'=0, [ A>=1 && B>=1 && free>=1 ], cost: 1+4*A 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Removed unreachable locations (and leaf rules with constant cost): 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 13: start0 -> start : C'=free, D'=0, [ A>=1 && B>=1 && free>=1 ], cost: 1+4*A 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 ### Computing asymptotic complexity ### 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Fully simplified ITS problem 4.50/2.14 4.50/2.14 Start location: start0 4.50/2.14 4.50/2.14 13: start0 -> start : C'=free, D'=0, [ A>=1 && B>=1 && free>=1 ], cost: 1+4*A 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Computing asymptotic complexity for rule 13 4.50/2.14 4.50/2.14 Solved the limit problem by the following transformations: 4.50/2.14 4.50/2.14 Created initial limit problem: 4.50/2.14 4.50/2.14 free (+/+!), 1+4*A (+), A (+/+!), B (+/+!) [not solved] 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 removing all constraints (solved by SMT) 4.50/2.14 4.50/2.14 resulting limit problem: [solved] 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 applying transformation rule (C) using substitution {free==n,A==n,B==n} 4.50/2.14 4.50/2.14 resulting limit problem: 4.50/2.14 4.50/2.14 [solved] 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Solution: 4.50/2.14 4.50/2.14 free / n 4.50/2.14 4.50/2.14 A / n 4.50/2.14 4.50/2.14 B / n 4.50/2.14 4.50/2.14 Resulting cost 1+4*n has complexity: Poly(n^1) 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Found new complexity Poly(n^1). 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 Obtained the following overall complexity (w.r.t. the length of the input n): 4.50/2.14 4.50/2.14 Complexity: Poly(n^1) 4.50/2.14 4.50/2.14 Cpx degree: 1 4.50/2.14 4.50/2.14 Solved cost: 1+4*n 4.50/2.14 4.50/2.14 Rule cost: 1+4*A 4.50/2.14 4.50/2.14 Rule guard: [ A>=1 && B>=1 && free>=1 ] 4.50/2.14 4.50/2.14 4.50/2.14 4.50/2.14 WORST_CASE(Omega(n^1),?) 4.50/2.14 4.50/2.14 4.50/2.14 ---------------------------------------- 4.50/2.14 4.50/2.14 (4) 4.50/2.14 BOUNDS(n^1, INF) 4.66/2.15 EOF