3.87/1.85 WORST_CASE(Omega(n^1), O(n^1)) 3.95/1.86 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.95/1.86 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.95/1.86 3.95/1.86 3.95/1.86 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 3.95/1.86 3.95/1.86 (0) CpxIntTrs 3.95/1.86 (1) Koat Proof [FINISHED, 118 ms] 3.95/1.86 (2) BOUNDS(1, n^1) 3.95/1.86 (3) Loat Proof [FINISHED, 229 ms] 3.95/1.86 (4) BOUNDS(n^1, INF) 3.95/1.86 3.95/1.86 3.95/1.86 ---------------------------------------- 3.95/1.86 3.95/1.86 (0) 3.95/1.86 Obligation: 3.95/1.86 Complexity Int TRS consisting of the following rules: 3.95/1.86 start(A, B, C, D) -> Com_1(stop(A, B, C, D)) :|: 1 >= A && B >= C && B <= C && D >= A && D <= A 3.95/1.86 start(A, B, C, D) -> Com_1(lbl32(A, B, C, D - 1)) :|: A >= 2 && B >= C && B <= C && D >= A && D <= A 3.95/1.86 lbl32(A, B, C, D) -> Com_1(stop(A, B, C, D)) :|: A >= 2 && D >= 1 && D <= 1 && B >= C && B <= C 3.95/1.86 lbl32(A, B, C, D) -> Com_1(lbl32(A, B, C, D - 1)) :|: D >= 2 && D >= 1 && A >= D + 1 && B >= C && B <= C 3.95/1.86 start0(A, B, C, D) -> Com_1(start(A, C, C, A)) :|: TRUE 3.95/1.86 3.95/1.86 The start-symbols are:[start0_4] 3.95/1.86 3.95/1.86 3.95/1.86 ---------------------------------------- 3.95/1.86 3.95/1.86 (1) Koat Proof (FINISHED) 3.95/1.86 YES(?, ar_0 + 4) 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Initial complexity problem: 3.95/1.86 3.95/1.86 1: T: 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ 1 >= ar_0 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_0 >= 2 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 2 /\ ar_3 = 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_3 >= 2 /\ ar_3 >= 1 /\ ar_0 >= ar_3 + 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_2, ar_2, ar_0)) 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.95/1.86 3.95/1.86 start location: koat_start 3.95/1.86 3.95/1.86 leaf cost: 0 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.95/1.86 3.95/1.86 2: T: 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ 1 >= ar_0 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_0 >= 2 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 2 /\ ar_3 = 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_3 >= 2 /\ ar_3 >= 1 /\ ar_0 >= ar_3 + 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_2, ar_2, ar_0)) 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.95/1.86 3.95/1.86 start location: koat_start 3.95/1.86 3.95/1.86 leaf cost: 0 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 A polynomial rank function with 3.95/1.86 3.95/1.86 Pol(start) = 1 3.95/1.86 3.95/1.86 Pol(stop) = 0 3.95/1.86 3.95/1.86 Pol(lbl32) = 1 3.95/1.86 3.95/1.86 Pol(start0) = 1 3.95/1.86 3.95/1.86 Pol(koat_start) = 1 3.95/1.86 3.95/1.86 orients all transitions weakly and the transition 3.95/1.86 3.95/1.86 lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 2 /\ ar_3 = 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 strictly and produces the following problem: 3.95/1.86 3.95/1.86 3: T: 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ 1 >= ar_0 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_0 >= 2 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 2 /\ ar_3 = 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: ?, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_3 >= 2 /\ ar_3 >= 1 /\ ar_0 >= ar_3 + 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_2, ar_2, ar_0)) 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.95/1.86 3.95/1.86 start location: koat_start 3.95/1.86 3.95/1.86 leaf cost: 0 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 A polynomial rank function with 3.95/1.86 3.95/1.86 Pol(start) = V_1 3.95/1.86 3.95/1.86 Pol(stop) = V_4 3.95/1.86 3.95/1.86 Pol(lbl32) = V_4 3.95/1.86 3.95/1.86 Pol(start0) = V_1 3.95/1.86 3.95/1.86 Pol(koat_start) = V_1 3.95/1.86 3.95/1.86 orients all transitions weakly and the transition 3.95/1.86 3.95/1.86 lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_3 >= 2 /\ ar_3 >= 1 /\ ar_0 >= ar_3 + 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 strictly and produces the following problem: 3.95/1.86 3.95/1.86 4: T: 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ 1 >= ar_0 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_0 >= 2 /\ ar_1 = ar_2 /\ ar_3 = ar_0 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(stop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 2 /\ ar_3 = 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: ar_0, Cost: 1) lbl32(ar_0, ar_1, ar_2, ar_3) -> Com_1(lbl32(ar_0, ar_1, ar_2, ar_3 - 1)) [ ar_3 >= 2 /\ ar_3 >= 1 /\ ar_0 >= ar_3 + 1 /\ ar_1 = ar_2 ] 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 1) start0(ar_0, ar_1, ar_2, ar_3) -> Com_1(start(ar_0, ar_2, ar_2, ar_0)) 3.95/1.86 3.95/1.86 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(start0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.95/1.86 3.95/1.86 start location: koat_start 3.95/1.86 3.95/1.86 leaf cost: 0 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Complexity upper bound ar_0 + 4 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Time: 0.101 sec (SMT: 0.092 sec) 3.95/1.86 3.95/1.86 3.95/1.86 ---------------------------------------- 3.95/1.86 3.95/1.86 (2) 3.95/1.86 BOUNDS(1, n^1) 3.95/1.86 3.95/1.86 ---------------------------------------- 3.95/1.86 3.95/1.86 (3) Loat Proof (FINISHED) 3.95/1.86 3.95/1.86 3.95/1.86 ### Pre-processing the ITS problem ### 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Initial linear ITS problem 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 0: start -> stop : [ 1>=A && B==C && D==A ], cost: 1 3.95/1.86 3.95/1.86 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3.95/1.86 3.95/1.86 2: lbl32 -> stop : [ A>=2 && D==1 && B==C ], cost: 1 3.95/1.86 3.95/1.86 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && D>=1 && A>=1+D && B==C ], cost: 1 3.95/1.86 3.95/1.86 4: start0 -> start : B'=C, D'=A, [], cost: 1 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Removed unreachable and leaf rules: 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3.95/1.86 3.95/1.86 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && D>=1 && A>=1+D && B==C ], cost: 1 3.95/1.86 3.95/1.86 4: start0 -> start : B'=C, D'=A, [], cost: 1 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Simplified all rules, resulting in: 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3.95/1.86 3.95/1.86 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && A>=1+D && B==C ], cost: 1 3.95/1.86 3.95/1.86 4: start0 -> start : B'=C, D'=A, [], cost: 1 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 ### Simplification by acceleration and chaining ### 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Accelerating simple loops of location 1. 3.95/1.86 3.95/1.86 Accelerating the following rules: 3.95/1.86 3.95/1.86 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && A>=1+D && B==C ], cost: 1 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Accelerated rule 3 with metering function -1+D, yielding the new rule 5. 3.95/1.86 3.95/1.86 Removing the simple loops: 3. 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Accelerated all simple loops using metering functions (where possible): 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3.95/1.86 3.95/1.86 5: lbl32 -> lbl32 : D'=1, [ D>=2 && A>=1+D && B==C ], cost: -1+D 3.95/1.86 3.95/1.86 4: start0 -> start : B'=C, D'=A, [], cost: 1 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Chained accelerated rules (with incoming rules): 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3.95/1.86 3.95/1.86 6: start -> lbl32 : D'=1, [ A>=2 && B==C && D==A && -1+D>=2 ], cost: -1+D 3.95/1.86 3.95/1.86 4: start0 -> start : B'=C, D'=A, [], cost: 1 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Removed unreachable locations (and leaf rules with constant cost): 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 6: start -> lbl32 : D'=1, [ A>=2 && B==C && D==A && -1+D>=2 ], cost: -1+D 3.95/1.86 3.95/1.86 4: start0 -> start : B'=C, D'=A, [], cost: 1 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Eliminated locations (on linear paths): 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 7: start0 -> lbl32 : B'=C, D'=1, [ -1+A>=2 ], cost: A 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 ### Computing asymptotic complexity ### 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Fully simplified ITS problem 3.95/1.86 3.95/1.86 Start location: start0 3.95/1.86 3.95/1.86 7: start0 -> lbl32 : B'=C, D'=1, [ -1+A>=2 ], cost: A 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Computing asymptotic complexity for rule 7 3.95/1.86 3.95/1.86 Solved the limit problem by the following transformations: 3.95/1.86 3.95/1.86 Created initial limit problem: 3.95/1.86 3.95/1.86 A (+), -2+A (+/+!) [not solved] 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 removing all constraints (solved by SMT) 3.95/1.86 3.95/1.86 resulting limit problem: [solved] 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 applying transformation rule (C) using substitution {A==n} 3.95/1.86 3.95/1.86 resulting limit problem: 3.95/1.86 3.95/1.86 [solved] 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Solution: 3.95/1.86 3.95/1.86 A / n 3.95/1.86 3.95/1.86 Resulting cost n has complexity: Poly(n^1) 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Found new complexity Poly(n^1). 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 Obtained the following overall complexity (w.r.t. the length of the input n): 3.95/1.86 3.95/1.86 Complexity: Poly(n^1) 3.95/1.86 3.95/1.86 Cpx degree: 1 3.95/1.86 3.95/1.86 Solved cost: n 3.95/1.86 3.95/1.86 Rule cost: A 3.95/1.86 3.95/1.86 Rule guard: [ -1+A>=2 ] 3.95/1.86 3.95/1.86 3.95/1.86 3.95/1.86 WORST_CASE(Omega(n^1),?) 3.95/1.86 3.95/1.86 3.95/1.86 ---------------------------------------- 3.95/1.86 3.95/1.86 (4) 3.95/1.86 BOUNDS(n^1, INF) 3.97/2.22 EOF