3.53/2.01 WORST_CASE(NON_POLY, ?) 3.53/2.02 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.53/2.02 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.53/2.02 3.53/2.02 3.53/2.02 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(EXP, EXP). 3.53/2.02 3.53/2.02 (0) CpxIntTrs 3.53/2.02 (1) Koat Proof [FINISHED, 36 ms] 3.53/2.02 (2) BOUNDS(1, EXP) 3.53/2.02 (3) Loat Proof [FINISHED, 337 ms] 3.53/2.02 (4) BOUNDS(EXP, INF) 3.53/2.02 3.53/2.02 3.53/2.02 ---------------------------------------- 3.53/2.02 3.53/2.02 (0) 3.53/2.02 Obligation: 3.53/2.02 Complexity Int TRS consisting of the following rules: 3.53/2.02 f(A, B, C) -> Com_1(g(A, 1, 0)) :|: TRUE 3.53/2.02 g(A, B, C) -> Com_1(g1(A - 1, B, B)) :|: A > 0 3.53/2.02 g1(A, B, C) -> Com_1(g(A, C + B, C)) :|: TRUE 3.53/2.02 g(A, B, C) -> Com_1(h(A, B, C)) :|: A <= 0 3.53/2.02 h(A, B, C) -> Com_1(h(A, B - 1, C)) :|: B > 0 3.53/2.02 3.53/2.02 The start-symbols are:[f_3] 3.53/2.02 3.53/2.02 3.53/2.02 ---------------------------------------- 3.53/2.02 3.53/2.02 (1) Koat Proof (FINISHED) 3.53/2.02 YES(?, pow(2, ar_2) + 2*ar_2 + 2) 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Initial complexity problem: 3.53/2.02 3.53/2.02 1: T: 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.53/2.02 3.53/2.02 start location: koat_start 3.53/2.02 3.53/2.02 leaf cost: 0 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.53/2.02 3.53/2.02 2: T: 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.53/2.02 3.53/2.02 start location: koat_start 3.53/2.02 3.53/2.02 leaf cost: 0 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 A polynomial rank function with 3.53/2.02 3.53/2.02 Pol(f) = 1 3.53/2.02 3.53/2.02 Pol(g) = 1 3.53/2.02 3.53/2.02 Pol(g1) = 1 3.53/2.02 3.53/2.02 Pol(h) = 0 3.53/2.02 3.53/2.02 Pol(koat_start) = 1 3.53/2.02 3.53/2.02 orients all transitions weakly and the transition 3.53/2.02 3.53/2.02 g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.53/2.02 3.53/2.02 strictly and produces the following problem: 3.53/2.02 3.53/2.02 3: T: 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2)) 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.53/2.02 3.53/2.02 start location: koat_start 3.53/2.02 3.53/2.02 leaf cost: 0 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 A polynomial rank function with 3.53/2.02 3.53/2.02 Pol(f) = V_3 3.53/2.02 3.53/2.02 Pol(g) = V_3 3.53/2.02 3.53/2.02 Pol(g1) = V_3 3.53/2.02 3.53/2.02 Pol(h) = V_3 3.53/2.02 3.53/2.02 Pol(koat_start) = V_3 3.53/2.02 3.53/2.02 orients all transitions weakly and the transition 3.53/2.02 3.53/2.02 g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ] 3.53/2.02 3.53/2.02 strictly and produces the following problem: 3.53/2.02 3.53/2.02 4: T: 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ar_2, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2)) 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.53/2.02 3.53/2.02 start location: koat_start 3.53/2.02 3.53/2.02 leaf cost: 0 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Repeatedly propagating knowledge in problem 4 produces the following problem: 3.53/2.02 3.53/2.02 5: T: 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ar_2, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: ar_2, Cost: 1) g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2)) 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.53/2.02 3.53/2.02 (Comp: ?, Cost: 1) h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.53/2.02 3.53/2.02 start location: koat_start 3.53/2.02 3.53/2.02 leaf cost: 0 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 A polynomial rank function with 3.53/2.02 3.53/2.02 Pol(h) = V_1 3.53/2.02 3.53/2.02 and size complexities 3.53/2.02 3.53/2.02 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 3.53/2.02 3.53/2.02 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 3.53/2.02 3.53/2.02 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 3.53/2.02 3.53/2.02 S("h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ]", 0-0) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ]", 0-1) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ]", 0-2) = ar_2 3.53/2.02 3.53/2.02 S("g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-0) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-1) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-2) = ar_2 3.53/2.02 3.53/2.02 S("g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2))", 0-0) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2))", 0-1) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2))", 0-2) = ar_2 3.53/2.02 3.53/2.02 S("g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ]", 0-0) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ]", 0-1) = pow(2, ar_2) 3.53/2.02 3.53/2.02 S("g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ]", 0-2) = ar_2 3.53/2.02 3.53/2.02 S("f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2))", 0-0) = 1 3.53/2.02 3.53/2.02 S("f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2))", 0-1) = 0 3.53/2.02 3.53/2.02 S("f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2))", 0-2) = ar_2 3.53/2.02 3.53/2.02 orients the transitions 3.53/2.02 3.53/2.02 h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 weakly and the transition 3.53/2.02 3.53/2.02 h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 strictly and produces the following problem: 3.53/2.02 3.53/2.02 6: T: 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) f(ar_0, ar_1, ar_2) -> Com_1(g(1, 0, ar_2)) 3.53/2.02 3.53/2.02 (Comp: ar_2, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(g1(ar_0, ar_0, ar_2 - 1)) [ ar_2 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: ar_2, Cost: 1) g1(ar_0, ar_1, ar_2) -> Com_1(g(ar_1 + ar_0, ar_1, ar_2)) 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 1) g(ar_0, ar_1, ar_2) -> Com_1(h(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.53/2.02 3.53/2.02 (Comp: pow(2, ar_2), Cost: 1) h(ar_0, ar_1, ar_2) -> Com_1(h(ar_0 - 1, ar_1, ar_2)) [ ar_0 >= 1 ] 3.53/2.02 3.53/2.02 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.53/2.02 3.53/2.02 start location: koat_start 3.53/2.02 3.53/2.02 leaf cost: 0 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Complexity upper bound pow(2, ar_2) + 2*ar_2 + 2 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Time: 0.113 sec (SMT: 0.105 sec) 3.53/2.02 3.53/2.02 3.53/2.02 ---------------------------------------- 3.53/2.02 3.53/2.02 (2) 3.53/2.02 BOUNDS(1, EXP) 3.53/2.02 3.53/2.02 ---------------------------------------- 3.53/2.02 3.53/2.02 (3) Loat Proof (FINISHED) 3.53/2.02 3.53/2.02 3.53/2.02 ### Pre-processing the ITS problem ### 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Initial linear ITS problem 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 0: f -> g : A'=1, B'=0, [], cost: 1 3.53/2.02 3.53/2.02 1: g -> g1 : B'=A, C'=-1+C, [ C>=1 ], cost: 1 3.53/2.02 3.53/2.02 3: g -> h : [ 0>=C ], cost: 1 3.53/2.02 3.53/2.02 2: g1 -> g : A'=A+B, [], cost: 1 3.53/2.02 3.53/2.02 4: h -> h : A'=-1+A, [ A>=1 ], cost: 1 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 ### Simplification by acceleration and chaining ### 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Accelerating simple loops of location 3. 3.53/2.02 3.53/2.02 Accelerating the following rules: 3.53/2.02 3.53/2.02 4: h -> h : A'=-1+A, [ A>=1 ], cost: 1 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Accelerated rule 4 with metering function A, yielding the new rule 5. 3.53/2.02 3.53/2.02 Removing the simple loops: 4. 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Accelerated all simple loops using metering functions (where possible): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 0: f -> g : A'=1, B'=0, [], cost: 1 3.53/2.02 3.53/2.02 1: g -> g1 : B'=A, C'=-1+C, [ C>=1 ], cost: 1 3.53/2.02 3.53/2.02 3: g -> h : [ 0>=C ], cost: 1 3.53/2.02 3.53/2.02 2: g1 -> g : A'=A+B, [], cost: 1 3.53/2.02 3.53/2.02 5: h -> h : A'=0, [ A>=1 ], cost: A 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Chained accelerated rules (with incoming rules): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 0: f -> g : A'=1, B'=0, [], cost: 1 3.53/2.02 3.53/2.02 1: g -> g1 : B'=A, C'=-1+C, [ C>=1 ], cost: 1 3.53/2.02 3.53/2.02 3: g -> h : [ 0>=C ], cost: 1 3.53/2.02 3.53/2.02 6: g -> h : A'=0, [ 0>=C && A>=1 ], cost: 1+A 3.53/2.02 3.53/2.02 2: g1 -> g : A'=A+B, [], cost: 1 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Removed unreachable locations (and leaf rules with constant cost): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 0: f -> g : A'=1, B'=0, [], cost: 1 3.53/2.02 3.53/2.02 1: g -> g1 : B'=A, C'=-1+C, [ C>=1 ], cost: 1 3.53/2.02 3.53/2.02 6: g -> h : A'=0, [ 0>=C && A>=1 ], cost: 1+A 3.53/2.02 3.53/2.02 2: g1 -> g : A'=A+B, [], cost: 1 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Eliminated locations (on linear paths): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 0: f -> g : A'=1, B'=0, [], cost: 1 3.53/2.02 3.53/2.02 6: g -> h : A'=0, [ 0>=C && A>=1 ], cost: 1+A 3.53/2.02 3.53/2.02 7: g -> g : A'=2*A, B'=A, C'=-1+C, [ C>=1 ], cost: 2 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Accelerating simple loops of location 1. 3.53/2.02 3.53/2.02 Accelerating the following rules: 3.53/2.02 3.53/2.02 7: g -> g : A'=2*A, B'=A, C'=-1+C, [ C>=1 ], cost: 2 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Accelerated rule 7 with metering function C, yielding the new rule 8. 3.53/2.02 3.53/2.02 Removing the simple loops: 7. 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Accelerated all simple loops using metering functions (where possible): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 0: f -> g : A'=1, B'=0, [], cost: 1 3.53/2.02 3.53/2.02 6: g -> h : A'=0, [ 0>=C && A>=1 ], cost: 1+A 3.53/2.02 3.53/2.02 8: g -> g : A'=2^C*A, B'=1/2*2^C*A, C'=0, [ C>=1 ], cost: 2*C 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Chained accelerated rules (with incoming rules): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 0: f -> g : A'=1, B'=0, [], cost: 1 3.53/2.02 3.53/2.02 9: f -> g : A'=2^C, B'=1/2*2^C, C'=0, [ C>=1 ], cost: 1+2*C 3.53/2.02 3.53/2.02 6: g -> h : A'=0, [ 0>=C && A>=1 ], cost: 1+A 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Eliminated locations (on tree-shaped paths): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 10: f -> h : A'=0, B'=0, [ 0>=C ], cost: 3 3.53/2.02 3.53/2.02 11: f -> h : A'=0, B'=1/2*2^C, C'=0, [ C>=1 && 2^C>=1 ], cost: 2+2*C+2^C 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Applied pruning (of leafs and parallel rules): 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 11: f -> h : A'=0, B'=1/2*2^C, C'=0, [ C>=1 && 2^C>=1 ], cost: 2+2*C+2^C 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 ### Computing asymptotic complexity ### 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Fully simplified ITS problem 3.53/2.02 3.53/2.02 Start location: f 3.53/2.02 3.53/2.02 11: f -> h : A'=0, B'=1/2*2^C, C'=0, [ C>=1 && 2^C>=1 ], cost: 2+2*C+2^C 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Computing asymptotic complexity for rule 11 3.53/2.02 3.53/2.02 Solved the limit problem by the following transformations: 3.53/2.02 3.53/2.02 Created initial limit problem: 3.53/2.02 3.53/2.02 2+2*C+2^C (+), C (+/+!), 2^C (+/+!) [not solved] 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 applying transformation rule (E), replacing 2+2*C+2^C (+) by 1 (+/+!) and C (+) 3.53/2.02 3.53/2.02 resulting limit problem: 3.53/2.02 3.53/2.02 1 (+/+!), C (+), 2^C (+/+!) [not solved] 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 applying transformation rule (B), deleting 1 (+/+!) 3.53/2.02 3.53/2.02 resulting limit problem: 3.53/2.02 3.53/2.02 C (+), 2^C (+/+!) [not solved] 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 applying transformation rule (E), replacing 2^C (+/+!) by 1 (+/+!) and C (+) 3.53/2.02 3.53/2.02 resulting limit problem: 3.53/2.02 3.53/2.02 1 (+/+!), C (+) [not solved] 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 applying transformation rule (B), deleting 1 (+/+!) 3.53/2.02 3.53/2.02 resulting limit problem: 3.53/2.02 3.53/2.02 C (+) [solved] 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Solution: 3.53/2.02 3.53/2.02 C / n 3.53/2.02 3.53/2.02 Resulting cost 2+2*n+2^n has complexity: Exp 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Found new complexity Exp. 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 Obtained the following overall complexity (w.r.t. the length of the input n): 3.53/2.02 3.53/2.02 Complexity: Exp 3.53/2.02 3.53/2.02 Cpx degree: Exp 3.53/2.02 3.53/2.02 Solved cost: 2+2*n+2^n 3.53/2.02 3.53/2.02 Rule cost: 2+2*C+2^C 3.53/2.02 3.53/2.02 Rule guard: [ C>=1 && 2^C>=1 ] 3.53/2.02 3.53/2.02 3.53/2.02 3.53/2.02 WORST_CASE(EXP,?) 3.53/2.02 3.53/2.02 3.53/2.02 ---------------------------------------- 3.53/2.02 3.53/2.02 (4) 3.53/2.02 BOUNDS(EXP, INF) 4.28/2.15 EOF