4.71/2.51 WORST_CASE(Omega(n^1), O(n^2)) 4.71/2.52 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.71/2.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.71/2.52 4.71/2.52 4.71/2.52 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(4, 4 + 2 * Arg_0) + nat(2 + 2 * Arg_0) + nat(Arg_0 + Arg_0^2)). 4.71/2.52 4.71/2.52 (0) CpxIntTrs 4.71/2.52 (1) Koat2 Proof [FINISHED, 829 ms] 4.71/2.52 (2) BOUNDS(1, max(4, 4 + 2 * Arg_0) + nat(2 + 2 * Arg_0) + nat(Arg_0 + Arg_0^2)) 4.71/2.52 (3) Loat Proof [FINISHED, 325 ms] 4.71/2.52 (4) BOUNDS(n^1, INF) 4.71/2.52 4.71/2.52 4.71/2.52 ---------------------------------------- 4.71/2.52 4.71/2.52 (0) 4.71/2.52 Obligation: 4.71/2.52 Complexity Int TRS consisting of the following rules: 4.71/2.52 evalfstart(A, B, C) -> Com_1(evalfentryin(A, B, C)) :|: TRUE 4.71/2.52 evalfentryin(A, B, C) -> Com_1(evalfbb4in(B, A, C)) :|: TRUE 4.71/2.52 evalfbb4in(A, B, C) -> Com_1(evalfbb2in(A, B, A)) :|: B >= 1 4.71/2.52 evalfbb4in(A, B, C) -> Com_1(evalfreturnin(A, B, C)) :|: 0 >= B 4.71/2.52 evalfbb2in(A, B, C) -> Com_1(evalfbb1in(A, B, C)) :|: C >= A 4.71/2.52 evalfbb2in(A, B, C) -> Com_1(evalfbb3in(A, B, C)) :|: A >= C + 1 4.71/2.52 evalfbb1in(A, B, C) -> Com_1(evalfbb2in(A, B, C - 1)) :|: TRUE 4.71/2.52 evalfbb3in(A, B, C) -> Com_1(evalfbb4in(A, B - 1, C)) :|: TRUE 4.71/2.52 evalfreturnin(A, B, C) -> Com_1(evalfstop(A, B, C)) :|: TRUE 4.71/2.52 4.71/2.52 The start-symbols are:[evalfstart_3] 4.71/2.52 4.71/2.52 4.71/2.52 ---------------------------------------- 4.71/2.52 4.71/2.52 (1) Koat2 Proof (FINISHED) 4.71/2.52 YES( ?, 4+2*max([0, Arg_0])+max([0, 1+Arg_0])+max([0, Arg_0*(1+Arg_0)])+max([0, 1+Arg_0]) {O(n^2)}) 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Initial Complexity Problem: 4.71/2.52 4.71/2.52 Start: evalfstart 4.71/2.52 4.71/2.52 Program_Vars: Arg_0, Arg_1, Arg_2 4.71/2.52 4.71/2.52 Temp_Vars: 4.71/2.52 4.71/2.52 Locations: evalfbb1in, evalfbb2in, evalfbb3in, evalfbb4in, evalfentryin, evalfreturnin, evalfstart, evalfstop 4.71/2.52 4.71/2.52 Transitions: 4.71/2.52 4.71/2.52 evalfbb1in(Arg_0,Arg_1,Arg_2) -> evalfbb2in(Arg_0,Arg_1,Arg_2-1):|:Arg_2 <= Arg_0 && Arg_0 <= Arg_2 && 1 <= Arg_1 4.71/2.52 4.71/2.52 evalfbb2in(Arg_0,Arg_1,Arg_2) -> evalfbb1in(Arg_0,Arg_1,Arg_2):|:Arg_2 <= Arg_0 && 1 <= Arg_1 && Arg_0 <= Arg_2 4.71/2.52 4.71/2.52 evalfbb2in(Arg_0,Arg_1,Arg_2) -> evalfbb3in(Arg_0,Arg_1,Arg_2):|:Arg_2 <= Arg_0 && 1 <= Arg_1 && Arg_2+1 <= Arg_0 4.71/2.52 4.71/2.52 evalfbb3in(Arg_0,Arg_1,Arg_2) -> evalfbb4in(Arg_0,Arg_1-1,Arg_2):|:1+Arg_2 <= Arg_0 && 1 <= Arg_1 4.71/2.52 4.71/2.52 evalfbb4in(Arg_0,Arg_1,Arg_2) -> evalfbb2in(Arg_0,Arg_1,Arg_0):|:1 <= Arg_1 4.71/2.52 4.71/2.52 evalfbb4in(Arg_0,Arg_1,Arg_2) -> evalfreturnin(Arg_0,Arg_1,Arg_2):|:Arg_1 <= 0 4.71/2.52 4.71/2.52 evalfentryin(Arg_0,Arg_1,Arg_2) -> evalfbb4in(Arg_1,Arg_0,Arg_2):|: 4.71/2.52 4.71/2.52 evalfreturnin(Arg_0,Arg_1,Arg_2) -> evalfstop(Arg_0,Arg_1,Arg_2):|:Arg_1 <= 0 4.71/2.52 4.71/2.52 evalfstart(Arg_0,Arg_1,Arg_2) -> evalfentryin(Arg_0,Arg_1,Arg_2):|: 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Timebounds: 4.71/2.52 4.71/2.52 Overall timebound: 4+2*max([0, Arg_0])+max([0, 1+Arg_0])+max([0, Arg_0*(1+Arg_0)])+max([0, 1+Arg_0]) {O(n^2)} 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in: max([0, Arg_0*(1+Arg_0)]) {O(n^2)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in: max([0, 1+Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in: max([0, Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in: max([0, Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in: max([0, 1+Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin: 1 {O(1)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in: 1 {O(1)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop: 1 {O(1)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin: 1 {O(1)} 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Costbounds: 4.71/2.52 4.71/2.52 Overall costbound: 4+2*max([0, Arg_0])+max([0, 1+Arg_0])+max([0, Arg_0*(1+Arg_0)])+max([0, 1+Arg_0]) {O(n^2)} 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in: max([0, Arg_0*(1+Arg_0)]) {O(n^2)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in: max([0, 1+Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in: max([0, Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in: max([0, Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in: max([0, 1+Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin: 1 {O(1)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in: 1 {O(1)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop: 1 {O(1)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin: 1 {O(1)} 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Sizebounds: 4.71/2.52 4.71/2.52 `Lower: 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in, Arg_1: 1 {O(1)} 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in, Arg_2: -1+Arg_1 {O(n)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in, Arg_1: 1 {O(1)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in, Arg_2: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in, Arg_1: 1 {O(1)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in, Arg_2: -1+Arg_1 {O(n)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in, Arg_1: 0 {O(1)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in, Arg_2: -1+Arg_1 {O(n)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in, Arg_1: 1 {O(1)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in, Arg_2: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin, Arg_1: min([0, Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin, Arg_2: min([Arg_2, -(1-Arg_1)]) {O(n)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in, Arg_1: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in, Arg_2: Arg_2 {O(n)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop, Arg_1: min([0, Arg_0]) {O(n)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop, Arg_2: min([Arg_2, -(1-Arg_1)]) {O(n)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin, Arg_0: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin, Arg_1: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin, Arg_2: Arg_2 {O(n)} 4.71/2.52 4.71/2.52 `Upper: 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in, Arg_1: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 6: evalfbb1in->evalfbb2in, Arg_2: -1+Arg_1 {O(n)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in, Arg_1: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 4: evalfbb2in->evalfbb1in, Arg_2: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in, Arg_1: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 5: evalfbb2in->evalfbb3in, Arg_2: -1+Arg_1 {O(n)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in, Arg_1: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 7: evalfbb3in->evalfbb4in, Arg_2: -1+Arg_1 {O(n)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in, Arg_1: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 2: evalfbb4in->evalfbb2in, Arg_2: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin, Arg_1: 0 {O(1)} 4.71/2.52 4.71/2.52 3: evalfbb4in->evalfreturnin, Arg_2: max([Arg_2, -1+Arg_1]) {O(n)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in, Arg_1: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 1: evalfentryin->evalfbb4in, Arg_2: Arg_2 {O(n)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop, Arg_0: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop, Arg_1: 0 {O(1)} 4.71/2.52 4.71/2.52 8: evalfreturnin->evalfstop, Arg_2: max([Arg_2, -1+Arg_1]) {O(n)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin, Arg_0: Arg_0 {O(n)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin, Arg_1: Arg_1 {O(n)} 4.71/2.52 4.71/2.52 0: evalfstart->evalfentryin, Arg_2: Arg_2 {O(n)} 4.71/2.52 4.71/2.52 4.71/2.52 ---------------------------------------- 4.71/2.52 4.71/2.52 (2) 4.71/2.52 BOUNDS(1, max(4, 4 + 2 * Arg_0) + nat(2 + 2 * Arg_0) + nat(Arg_0 + Arg_0^2)) 4.71/2.52 4.71/2.52 ---------------------------------------- 4.71/2.52 4.71/2.52 (3) Loat Proof (FINISHED) 4.71/2.52 4.71/2.52 4.71/2.52 ### Pre-processing the ITS problem ### 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Initial linear ITS problem 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 0: evalfstart -> evalfentryin : [], cost: 1 4.71/2.52 4.71/2.52 1: evalfentryin -> evalfbb4in : A'=B, B'=A, [], cost: 1 4.71/2.52 4.71/2.52 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 4.71/2.52 4.71/2.52 3: evalfbb4in -> evalfreturnin : [ 0>=B ], cost: 1 4.71/2.52 4.71/2.52 4: evalfbb2in -> evalfbb1in : [ C>=A ], cost: 1 4.71/2.52 4.71/2.52 5: evalfbb2in -> evalfbb3in : [ A>=1+C ], cost: 1 4.71/2.52 4.71/2.52 6: evalfbb1in -> evalfbb2in : C'=-1+C, [], cost: 1 4.71/2.52 4.71/2.52 7: evalfbb3in -> evalfbb4in : B'=-1+B, [], cost: 1 4.71/2.52 4.71/2.52 8: evalfreturnin -> evalfstop : [], cost: 1 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Removed unreachable and leaf rules: 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 0: evalfstart -> evalfentryin : [], cost: 1 4.71/2.52 4.71/2.52 1: evalfentryin -> evalfbb4in : A'=B, B'=A, [], cost: 1 4.71/2.52 4.71/2.52 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 4.71/2.52 4.71/2.52 4: evalfbb2in -> evalfbb1in : [ C>=A ], cost: 1 4.71/2.52 4.71/2.52 5: evalfbb2in -> evalfbb3in : [ A>=1+C ], cost: 1 4.71/2.52 4.71/2.52 6: evalfbb1in -> evalfbb2in : C'=-1+C, [], cost: 1 4.71/2.52 4.71/2.52 7: evalfbb3in -> evalfbb4in : B'=-1+B, [], cost: 1 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 ### Simplification by acceleration and chaining ### 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Eliminated locations (on linear paths): 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.71/2.52 4.71/2.52 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 4.71/2.52 4.71/2.52 10: evalfbb2in -> evalfbb2in : C'=-1+C, [ C>=A ], cost: 2 4.71/2.52 4.71/2.52 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ A>=1+C ], cost: 2 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Accelerating simple loops of location 3. 4.71/2.52 4.71/2.52 Accelerating the following rules: 4.71/2.52 4.71/2.52 10: evalfbb2in -> evalfbb2in : C'=-1+C, [ C>=A ], cost: 2 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Accelerated rule 10 with metering function 1+C-A, yielding the new rule 12. 4.71/2.52 4.71/2.52 Removing the simple loops: 10. 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Accelerated all simple loops using metering functions (where possible): 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.71/2.52 4.71/2.52 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 4.71/2.52 4.71/2.52 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ A>=1+C ], cost: 2 4.71/2.52 4.71/2.52 12: evalfbb2in -> evalfbb2in : C'=-1+A, [ C>=A ], cost: 2+2*C-2*A 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Chained accelerated rules (with incoming rules): 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.71/2.52 4.71/2.52 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 4.71/2.52 4.71/2.52 13: evalfbb4in -> evalfbb2in : C'=-1+A, [ B>=1 ], cost: 3 4.71/2.52 4.71/2.52 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ A>=1+C ], cost: 2 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Eliminated locations (on tree-shaped paths): 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.71/2.52 4.71/2.52 14: evalfbb4in -> evalfbb4in : B'=-1+B, C'=-1+A, [ B>=1 ], cost: 5 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Accelerating simple loops of location 2. 4.71/2.52 4.71/2.52 Accelerating the following rules: 4.71/2.52 4.71/2.52 14: evalfbb4in -> evalfbb4in : B'=-1+B, C'=-1+A, [ B>=1 ], cost: 5 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Accelerated rule 14 with metering function B, yielding the new rule 15. 4.71/2.52 4.71/2.52 Removing the simple loops: 14. 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Accelerated all simple loops using metering functions (where possible): 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.71/2.52 4.71/2.52 15: evalfbb4in -> evalfbb4in : B'=0, C'=-1+A, [ B>=1 ], cost: 5*B 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Chained accelerated rules (with incoming rules): 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.71/2.52 4.71/2.52 16: evalfstart -> evalfbb4in : A'=B, B'=0, C'=-1+B, [ A>=1 ], cost: 2+5*A 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Removed unreachable locations (and leaf rules with constant cost): 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 16: evalfstart -> evalfbb4in : A'=B, B'=0, C'=-1+B, [ A>=1 ], cost: 2+5*A 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 ### Computing asymptotic complexity ### 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Fully simplified ITS problem 4.71/2.52 4.71/2.52 Start location: evalfstart 4.71/2.52 4.71/2.52 16: evalfstart -> evalfbb4in : A'=B, B'=0, C'=-1+B, [ A>=1 ], cost: 2+5*A 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Computing asymptotic complexity for rule 16 4.71/2.52 4.71/2.52 Solved the limit problem by the following transformations: 4.71/2.52 4.71/2.52 Created initial limit problem: 4.71/2.52 4.71/2.52 2+5*A (+), A (+/+!) [not solved] 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 removing all constraints (solved by SMT) 4.71/2.52 4.71/2.52 resulting limit problem: [solved] 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 applying transformation rule (C) using substitution {A==n} 4.71/2.52 4.71/2.52 resulting limit problem: 4.71/2.52 4.71/2.52 [solved] 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Solution: 4.71/2.52 4.71/2.52 A / n 4.71/2.52 4.71/2.52 Resulting cost 2+5*n has complexity: Poly(n^1) 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Found new complexity Poly(n^1). 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 Obtained the following overall complexity (w.r.t. the length of the input n): 4.71/2.52 4.71/2.52 Complexity: Poly(n^1) 4.71/2.52 4.71/2.52 Cpx degree: 1 4.71/2.52 4.71/2.52 Solved cost: 2+5*n 4.71/2.52 4.71/2.52 Rule cost: 2+5*A 4.71/2.52 4.71/2.52 Rule guard: [ A>=1 ] 4.71/2.52 4.71/2.52 4.71/2.52 4.71/2.52 WORST_CASE(Omega(n^1),?) 4.71/2.52 4.71/2.52 4.71/2.52 ---------------------------------------- 4.71/2.52 4.71/2.52 (4) 4.71/2.52 BOUNDS(n^1, INF) 4.71/2.53 EOF