4.77/2.56 WORST_CASE(Omega(n^2), O(n^2)) 4.77/2.56 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.77/2.56 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.77/2.56 4.77/2.56 4.77/2.56 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 4.77/2.56 4.77/2.56 (0) CpxIntTrs 4.77/2.56 (1) Koat Proof [FINISHED, 107 ms] 4.77/2.56 (2) BOUNDS(1, n^2) 4.77/2.56 (3) Loat Proof [FINISHED, 588 ms] 4.77/2.56 (4) BOUNDS(n^2, INF) 4.77/2.56 4.77/2.56 4.77/2.56 ---------------------------------------- 4.77/2.56 4.77/2.56 (0) 4.77/2.56 Obligation: 4.77/2.56 Complexity Int TRS consisting of the following rules: 4.77/2.56 evalfstart(A, B, C) -> Com_1(evalfentryin(A, B, C)) :|: TRUE 4.77/2.56 evalfentryin(A, B, C) -> Com_1(evalfbb4in(1, B, C)) :|: TRUE 4.77/2.56 evalfbb4in(A, B, C) -> Com_1(evalfbb2in(A, B, 1)) :|: B >= A 4.77/2.56 evalfbb4in(A, B, C) -> Com_1(evalfreturnin(A, B, C)) :|: A >= B + 1 4.77/2.56 evalfbb2in(A, B, C) -> Com_1(evalfbb1in(A, B, C)) :|: A >= C 4.77/2.56 evalfbb2in(A, B, C) -> Com_1(evalfbb3in(A, B, C)) :|: C >= A + 1 4.77/2.56 evalfbb1in(A, B, C) -> Com_1(evalfbb2in(A, B, C + 1)) :|: TRUE 4.77/2.56 evalfbb3in(A, B, C) -> Com_1(evalfbb4in(A + 1, B, C)) :|: TRUE 4.77/2.56 evalfreturnin(A, B, C) -> Com_1(evalfstop(A, B, C)) :|: TRUE 4.77/2.56 4.77/2.56 The start-symbols are:[evalfstart_3] 4.77/2.56 4.77/2.56 4.77/2.56 ---------------------------------------- 4.77/2.56 4.77/2.56 (1) Koat Proof (FINISHED) 4.77/2.56 YES(?, 17*ar_1 + 4*ar_1^2 + 6) 4.77/2.56 4.77/2.56 4.77/2.56 4.77/2.56 Initial complexity problem: 4.77/2.56 4.77/2.56 1: T: 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.56 4.77/2.56 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.77/2.57 4.77/2.57 start location: koat_start 4.77/2.57 4.77/2.57 leaf cost: 0 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.77/2.57 4.77/2.57 2: T: 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.77/2.57 4.77/2.57 start location: koat_start 4.77/2.57 4.77/2.57 leaf cost: 0 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 A polynomial rank function with 4.77/2.57 4.77/2.57 Pol(evalfstart) = 2 4.77/2.57 4.77/2.57 Pol(evalfentryin) = 2 4.77/2.57 4.77/2.57 Pol(evalfbb4in) = 2 4.77/2.57 4.77/2.57 Pol(evalfbb2in) = 2 4.77/2.57 4.77/2.57 Pol(evalfreturnin) = 1 4.77/2.57 4.77/2.57 Pol(evalfbb1in) = 2 4.77/2.57 4.77/2.57 Pol(evalfbb3in) = 2 4.77/2.57 4.77/2.57 Pol(evalfstop) = 0 4.77/2.57 4.77/2.57 Pol(koat_start) = 2 4.77/2.57 4.77/2.57 orients all transitions weakly and the transitions 4.77/2.57 4.77/2.57 evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.57 4.77/2.57 strictly and produces the following problem: 4.77/2.57 4.77/2.57 3: T: 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.77/2.57 4.77/2.57 start location: koat_start 4.77/2.57 4.77/2.57 leaf cost: 0 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 A polynomial rank function with 4.77/2.57 4.77/2.57 Pol(evalfstart) = V_2 4.77/2.57 4.77/2.57 Pol(evalfentryin) = V_2 4.77/2.57 4.77/2.57 Pol(evalfbb4in) = -V_1 + V_2 + 1 4.77/2.57 4.77/2.57 Pol(evalfbb2in) = -V_1 + V_2 4.77/2.57 4.77/2.57 Pol(evalfreturnin) = -V_1 + V_2 4.77/2.57 4.77/2.57 Pol(evalfbb1in) = -V_1 + V_2 4.77/2.57 4.77/2.57 Pol(evalfbb3in) = -V_1 + V_2 4.77/2.57 4.77/2.57 Pol(evalfstop) = -V_1 + V_2 4.77/2.57 4.77/2.57 Pol(koat_start) = V_2 4.77/2.57 4.77/2.57 orients all transitions weakly and the transition 4.77/2.57 4.77/2.57 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.57 4.77/2.57 strictly and produces the following problem: 4.77/2.57 4.77/2.57 4: T: 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.77/2.57 4.77/2.57 start location: koat_start 4.77/2.57 4.77/2.57 leaf cost: 0 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 A polynomial rank function with 4.77/2.57 4.77/2.57 Pol(evalfbb3in) = 1 4.77/2.57 4.77/2.57 Pol(evalfbb4in) = 0 4.77/2.57 4.77/2.57 Pol(evalfbb2in) = 2 4.77/2.57 4.77/2.57 Pol(evalfbb1in) = 2 4.77/2.57 4.77/2.57 and size complexities 4.77/2.57 4.77/2.57 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.77/2.57 4.77/2.57 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.77/2.57 4.77/2.57 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = ? 4.77/2.57 4.77/2.57 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-0) = ? 4.77/2.57 4.77/2.57 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-0) = ? 4.77/2.57 4.77/2.57 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-0) = ? 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-0) = ? 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-0) = ? 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ]", 0-0) = ? 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ]", 0-2) = 1 4.77/2.57 4.77/2.57 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-0) = 1 4.77/2.57 4.77/2.57 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-2) = ar_2 4.77/2.57 4.77/2.57 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.77/2.57 4.77/2.57 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.77/2.57 4.77/2.57 orients the transitions 4.77/2.57 4.77/2.57 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 weakly and the transitions 4.77/2.57 4.77/2.57 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 strictly and produces the following problem: 4.77/2.57 4.77/2.57 5: T: 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.77/2.57 4.77/2.57 start location: koat_start 4.77/2.57 4.77/2.57 leaf cost: 0 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 A polynomial rank function with 4.77/2.57 4.77/2.57 Pol(evalfbb2in) = V_1 - V_3 + 1 4.77/2.57 4.77/2.57 Pol(evalfbb1in) = V_1 - V_3 4.77/2.57 4.77/2.57 and size complexities 4.77/2.57 4.77/2.57 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.77/2.57 4.77/2.57 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.77/2.57 4.77/2.57 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = 2*ar_1 + 20 4.77/2.57 4.77/2.57 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-0) = 2*ar_1 + 4 4.77/2.57 4.77/2.57 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-0) = 2*ar_1 + 4 4.77/2.57 4.77/2.57 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-0) = 2*ar_1 + 4 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-0) = 2*ar_1 + 4 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-0) = 2*ar_1 + 10 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ]", 0-0) = 2*ar_1 + 4 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ]", 0-2) = 1 4.77/2.57 4.77/2.57 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-0) = 1 4.77/2.57 4.77/2.57 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-2) = ar_2 4.77/2.57 4.77/2.57 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.77/2.57 4.77/2.57 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.77/2.57 4.77/2.57 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.77/2.57 4.77/2.57 orients the transitions 4.77/2.57 4.77/2.57 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 weakly and the transition 4.77/2.57 4.77/2.57 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 strictly and produces the following problem: 4.77/2.57 4.77/2.57 6: T: 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.57 4.77/2.57 (Comp: 2*ar_1^2 + 6*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.77/2.57 4.77/2.57 start location: koat_start 4.77/2.57 4.77/2.57 leaf cost: 0 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Repeatedly propagating knowledge in problem 6 produces the following problem: 4.77/2.57 4.77/2.57 7: T: 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= ar_0 ] 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.77/2.57 4.77/2.57 (Comp: 2*ar_1^2 + 6*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.77/2.57 4.77/2.57 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.77/2.57 4.77/2.57 (Comp: 2*ar_1^2 + 6*ar_1, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.77/2.57 4.77/2.57 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.77/2.57 4.77/2.57 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.77/2.57 4.77/2.57 start location: koat_start 4.77/2.57 4.77/2.57 leaf cost: 0 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Complexity upper bound 17*ar_1 + 4*ar_1^2 + 6 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Time: 0.094 sec (SMT: 0.082 sec) 4.77/2.57 4.77/2.57 4.77/2.57 ---------------------------------------- 4.77/2.57 4.77/2.57 (2) 4.77/2.57 BOUNDS(1, n^2) 4.77/2.57 4.77/2.57 ---------------------------------------- 4.77/2.57 4.77/2.57 (3) Loat Proof (FINISHED) 4.77/2.57 4.77/2.57 4.77/2.57 ### Pre-processing the ITS problem ### 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Initial linear ITS problem 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 0: evalfstart -> evalfentryin : [], cost: 1 4.77/2.57 4.77/2.57 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 4.77/2.57 4.77/2.57 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.77/2.57 4.77/2.57 3: evalfbb4in -> evalfreturnin : [ A>=1+B ], cost: 1 4.77/2.57 4.77/2.57 4: evalfbb2in -> evalfbb1in : [ A>=C ], cost: 1 4.77/2.57 4.77/2.57 5: evalfbb2in -> evalfbb3in : [ C>=1+A ], cost: 1 4.77/2.57 4.77/2.57 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.77/2.57 4.77/2.57 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 4.77/2.57 4.77/2.57 8: evalfreturnin -> evalfstop : [], cost: 1 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Removed unreachable and leaf rules: 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 0: evalfstart -> evalfentryin : [], cost: 1 4.77/2.57 4.77/2.57 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 4.77/2.57 4.77/2.57 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.77/2.57 4.77/2.57 4: evalfbb2in -> evalfbb1in : [ A>=C ], cost: 1 4.77/2.57 4.77/2.57 5: evalfbb2in -> evalfbb3in : [ C>=1+A ], cost: 1 4.77/2.57 4.77/2.57 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.77/2.57 4.77/2.57 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 ### Simplification by acceleration and chaining ### 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Eliminated locations (on linear paths): 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.77/2.57 4.77/2.57 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.77/2.57 4.77/2.57 10: evalfbb2in -> evalfbb2in : C'=1+C, [ A>=C ], cost: 2 4.77/2.57 4.77/2.57 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+A ], cost: 2 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Accelerating simple loops of location 3. 4.77/2.57 4.77/2.57 Accelerating the following rules: 4.77/2.57 4.77/2.57 10: evalfbb2in -> evalfbb2in : C'=1+C, [ A>=C ], cost: 2 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Accelerated rule 10 with metering function 1-C+A, yielding the new rule 12. 4.77/2.57 4.77/2.57 Removing the simple loops: 10. 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Accelerated all simple loops using metering functions (where possible): 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.77/2.57 4.77/2.57 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.77/2.57 4.77/2.57 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+A ], cost: 2 4.77/2.57 4.77/2.57 12: evalfbb2in -> evalfbb2in : C'=1+A, [ A>=C ], cost: 2-2*C+2*A 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Chained accelerated rules (with incoming rules): 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.77/2.57 4.77/2.57 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.77/2.57 4.77/2.57 13: evalfbb4in -> evalfbb2in : C'=1+A, [ B>=A && A>=1 ], cost: 1+2*A 4.77/2.57 4.77/2.57 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+A ], cost: 2 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Eliminated locations (on tree-shaped paths): 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.77/2.57 4.77/2.57 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1, [ B>=A && 1>=1+A ], cost: 3 4.77/2.57 4.77/2.57 15: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+A, [ B>=A && A>=1 ], cost: 3+2*A 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Accelerating simple loops of location 2. 4.77/2.57 4.77/2.57 Accelerating the following rules: 4.77/2.57 4.77/2.57 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1, [ B>=A && 1>=1+A ], cost: 3 4.77/2.57 4.77/2.57 15: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+A, [ B>=A && A>=1 ], cost: 3+2*A 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Accelerated rule 14 with backward acceleration, yielding the new rule 16. 4.77/2.57 4.77/2.57 Accelerated rule 14 with backward acceleration, yielding the new rule 17. 4.77/2.57 4.77/2.57 Accelerated rule 15 with metering function 1-A+B, yielding the new rule 18. 4.77/2.57 4.77/2.57 Removing the simple loops: 14 15. 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Accelerated all simple loops using metering functions (where possible): 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.77/2.57 4.77/2.57 16: evalfbb4in -> evalfbb4in : A'=1+B, C'=1, [ B>=A && 1>=1+A && 1>=1+B ], cost: 3-3*A+3*B 4.77/2.57 4.77/2.57 17: evalfbb4in -> evalfbb4in : A'=1, C'=1, [ B>=A && 1>=1+A && B>=0 ], cost: 3-3*A 4.77/2.57 4.77/2.57 18: evalfbb4in -> evalfbb4in : A'=1+B, C'=1+B, [ B>=A && A>=1 ], cost: 2-2*(-1+A-B)*A-2*A+(-1+A-B)^2+2*B 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Chained accelerated rules (with incoming rules): 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.77/2.57 4.77/2.57 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+B, [ B>=1 ], cost: 2+B^2+4*B 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Removed unreachable locations (and leaf rules with constant cost): 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+B, [ B>=1 ], cost: 2+B^2+4*B 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 ### Computing asymptotic complexity ### 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Fully simplified ITS problem 4.77/2.57 4.77/2.57 Start location: evalfstart 4.77/2.57 4.77/2.57 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+B, [ B>=1 ], cost: 2+B^2+4*B 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Computing asymptotic complexity for rule 19 4.77/2.57 4.77/2.57 Solved the limit problem by the following transformations: 4.77/2.57 4.77/2.57 Created initial limit problem: 4.77/2.57 4.77/2.57 2+B^2+4*B (+), B (+/+!) [not solved] 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 removing all constraints (solved by SMT) 4.77/2.57 4.77/2.57 resulting limit problem: [solved] 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 applying transformation rule (C) using substitution {B==n} 4.77/2.57 4.77/2.57 resulting limit problem: 4.77/2.57 4.77/2.57 [solved] 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Solution: 4.77/2.57 4.77/2.57 B / n 4.77/2.57 4.77/2.57 Resulting cost 2+n^2+4*n has complexity: Poly(n^2) 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Found new complexity Poly(n^2). 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 Obtained the following overall complexity (w.r.t. the length of the input n): 4.77/2.57 4.77/2.57 Complexity: Poly(n^2) 4.77/2.57 4.77/2.57 Cpx degree: 2 4.77/2.57 4.77/2.57 Solved cost: 2+n^2+4*n 4.77/2.57 4.77/2.57 Rule cost: 2+B^2+4*B 4.77/2.57 4.77/2.57 Rule guard: [ B>=1 ] 4.77/2.57 4.77/2.57 4.77/2.57 4.77/2.57 WORST_CASE(Omega(n^2),?) 4.77/2.57 4.77/2.57 4.77/2.57 ---------------------------------------- 4.77/2.57 4.77/2.57 (4) 4.77/2.57 BOUNDS(n^2, INF) 4.85/2.59 EOF