4.76/2.19 WORST_CASE(Omega(n^2), O(n^2)) 4.76/2.20 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.76/2.20 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.76/2.20 4.76/2.20 4.76/2.20 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 4.76/2.20 4.76/2.20 (0) CpxIntTrs 4.76/2.20 (1) Koat Proof [FINISHED, 118 ms] 4.76/2.20 (2) BOUNDS(1, n^2) 4.76/2.20 (3) Loat Proof [FINISHED, 589 ms] 4.76/2.20 (4) BOUNDS(n^2, INF) 4.76/2.20 4.76/2.20 4.76/2.20 ---------------------------------------- 4.76/2.20 4.76/2.20 (0) 4.76/2.20 Obligation: 4.76/2.20 Complexity Int TRS consisting of the following rules: 4.76/2.20 evalfstart(A, B, C, D) -> Com_1(evalfentryin(A, B, C, D)) :|: TRUE 4.76/2.20 evalfentryin(A, B, C, D) -> Com_1(evalfbb4in(1, B, C, D)) :|: TRUE 4.76/2.20 evalfbb4in(A, B, C, D) -> Com_1(evalfbb2in(A, B, 1, D)) :|: B >= A 4.76/2.20 evalfbb4in(A, B, C, D) -> Com_1(evalfreturnin(A, B, C, D)) :|: A >= B + 1 4.76/2.20 evalfbb2in(A, B, C, D) -> Com_1(evalfbb1in(A, B, C, D)) :|: D >= C 4.76/2.20 evalfbb2in(A, B, C, D) -> Com_1(evalfbb3in(A, B, C, D)) :|: C >= D + 1 4.76/2.20 evalfbb1in(A, B, C, D) -> Com_1(evalfbb2in(A, B, C + 1, D)) :|: TRUE 4.76/2.20 evalfbb3in(A, B, C, D) -> Com_1(evalfbb4in(A + 1, B, C, D)) :|: TRUE 4.76/2.20 evalfreturnin(A, B, C, D) -> Com_1(evalfstop(A, B, C, D)) :|: TRUE 4.76/2.20 4.76/2.20 The start-symbols are:[evalfstart_4] 4.76/2.20 4.76/2.20 4.76/2.20 ---------------------------------------- 4.76/2.20 4.76/2.20 (1) Koat Proof (FINISHED) 4.76/2.20 YES(?, 9*ar_1 + 2*ar_1*ar_3 + 6) 4.76/2.20 4.76/2.20 4.76/2.20 4.76/2.20 Initial complexity problem: 4.76/2.20 4.76/2.20 1: T: 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.76/2.20 4.76/2.20 start location: koat_start 4.76/2.20 4.76/2.20 leaf cost: 0 4.76/2.20 4.76/2.20 4.76/2.20 4.76/2.20 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.76/2.20 4.76/2.20 2: T: 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.76/2.20 4.76/2.20 start location: koat_start 4.76/2.20 4.76/2.20 leaf cost: 0 4.76/2.20 4.76/2.20 4.76/2.20 4.76/2.20 A polynomial rank function with 4.76/2.20 4.76/2.20 Pol(evalfstart) = 2 4.76/2.20 4.76/2.20 Pol(evalfentryin) = 2 4.76/2.20 4.76/2.20 Pol(evalfbb4in) = 2 4.76/2.20 4.76/2.20 Pol(evalfbb2in) = 2 4.76/2.20 4.76/2.20 Pol(evalfreturnin) = 1 4.76/2.20 4.76/2.20 Pol(evalfbb1in) = 2 4.76/2.20 4.76/2.20 Pol(evalfbb3in) = 2 4.76/2.20 4.76/2.20 Pol(evalfstop) = 0 4.76/2.20 4.76/2.20 Pol(koat_start) = 2 4.76/2.20 4.76/2.20 orients all transitions weakly and the transitions 4.76/2.20 4.76/2.20 evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.76/2.20 4.76/2.20 strictly and produces the following problem: 4.76/2.20 4.76/2.20 3: T: 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.76/2.20 4.76/2.20 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.76/2.20 4.76/2.20 start location: koat_start 4.76/2.20 4.76/2.20 leaf cost: 0 4.76/2.20 4.76/2.20 4.76/2.20 4.76/2.20 A polynomial rank function with 4.76/2.20 4.76/2.20 Pol(evalfstart) = V_2 4.76/2.20 4.76/2.20 Pol(evalfentryin) = V_2 4.76/2.20 4.76/2.20 Pol(evalfbb4in) = -V_1 + V_2 + 1 4.76/2.20 4.76/2.20 Pol(evalfbb2in) = -V_1 + V_2 4.76/2.20 4.76/2.20 Pol(evalfreturnin) = -V_1 + V_2 4.76/2.20 4.76/2.20 Pol(evalfbb1in) = -V_1 + V_2 4.76/2.20 4.76/2.20 Pol(evalfbb3in) = -V_1 + V_2 4.76/2.20 4.76/2.20 Pol(evalfstop) = -V_1 + V_2 4.76/2.20 4.76/2.20 Pol(koat_start) = V_2 4.76/2.20 4.76/2.20 orients all transitions weakly and the transition 4.76/2.20 4.76/2.20 evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.76/2.20 4.76/2.20 strictly and produces the following problem: 4.76/2.20 4.76/2.20 4: T: 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.76/2.20 4.76/2.20 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.76/2.20 4.76/2.20 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.76/2.20 4.76/2.20 start location: koat_start 4.76/2.20 4.76/2.20 leaf cost: 0 4.76/2.20 4.76/2.20 4.76/2.20 4.76/2.20 A polynomial rank function with 4.76/2.20 4.76/2.20 Pol(evalfbb3in) = 1 4.76/2.20 4.76/2.20 Pol(evalfbb4in) = 0 4.76/2.20 4.76/2.20 Pol(evalfbb2in) = 2 4.76/2.20 4.76/2.20 Pol(evalfbb1in) = 2 4.76/2.20 4.76/2.20 and size complexities 4.76/2.20 4.76/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-0) = ar_0 4.76/2.20 4.76/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-2) = ar_2 4.76/2.20 4.76/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-0) = ? 4.76/2.20 4.76/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-2) = ? 4.76/2.20 4.76/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-0) = ? 4.76/2.20 4.76/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-2) = ? 4.76/2.20 4.76/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-0) = ? 4.76/2.20 4.76/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-2) = ? 4.76/2.20 4.76/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-0) = ? 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-2) = ? 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-0) = ? 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-2) = ? 4.76/2.20 4.76/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-0) = ? 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-0) = ? 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-2) = 1 4.76/2.20 4.76/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-0) = 1 4.76/2.20 4.76/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-2) = ar_2 4.76/2.20 4.76/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.76/2.20 4.76/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-0) = ar_0 4.76/2.20 4.76/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.76/2.20 4.76/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-2) = ar_2 4.76/2.20 4.76/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.76/2.20 4.76/2.20 orients the transitions 4.76/2.20 4.76/2.20 evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.76/2.20 4.76/2.20 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.76/2.20 4.76/2.20 evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.76/2.20 4.76/2.20 weakly and the transitions 4.76/2.20 4.76/2.20 evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.76/2.20 4.76/2.20 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.76/2.20 4.76/2.20 strictly and produces the following problem: 4.88/2.20 4.88/2.20 5: T: 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.88/2.20 4.88/2.20 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.88/2.20 4.88/2.20 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.88/2.20 4.88/2.20 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.88/2.20 4.88/2.20 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.88/2.20 4.88/2.20 start location: koat_start 4.88/2.20 4.88/2.20 leaf cost: 0 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 A polynomial rank function with 4.88/2.20 4.88/2.20 Pol(evalfbb2in) = -V_3 + V_4 + 1 4.88/2.20 4.88/2.20 Pol(evalfbb1in) = -V_3 + V_4 4.88/2.20 4.88/2.20 and size complexities 4.88/2.20 4.88/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-0) = ar_0 4.88/2.20 4.88/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-2) = ar_2 4.88/2.20 4.88/2.20 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-0) = 2*ar_1 + 20 4.88/2.20 4.88/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-2) = ? 4.88/2.20 4.88/2.20 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-0) = 2*ar_1 + 4 4.88/2.20 4.88/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-2) = ? 4.88/2.20 4.88/2.20 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-0) = 2*ar_1 + 4 4.88/2.20 4.88/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-2) = ? 4.88/2.20 4.88/2.20 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-0) = 2*ar_1 + 4 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-2) = ? 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-0) = 2*ar_1 + 4 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-2) = ? 4.88/2.20 4.88/2.20 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-0) = 2*ar_1 + 10 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-0) = 2*ar_1 + 4 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-2) = 1 4.88/2.20 4.88/2.20 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-0) = 1 4.88/2.20 4.88/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-2) = ar_2 4.88/2.20 4.88/2.20 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.88/2.20 4.88/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-0) = ar_0 4.88/2.20 4.88/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 4.88/2.20 4.88/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-2) = ar_2 4.88/2.20 4.88/2.20 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 4.88/2.20 4.88/2.20 orients the transitions 4.88/2.20 4.88/2.20 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.88/2.20 4.88/2.20 evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.88/2.20 4.88/2.20 weakly and the transition 4.88/2.20 4.88/2.20 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.88/2.20 4.88/2.20 strictly and produces the following problem: 4.88/2.20 4.88/2.20 6: T: 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.88/2.20 4.88/2.20 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.88/2.20 4.88/2.20 (Comp: ar_1*ar_3 + 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.88/2.20 4.88/2.20 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.88/2.20 4.88/2.20 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.88/2.20 4.88/2.20 start location: koat_start 4.88/2.20 4.88/2.20 leaf cost: 0 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Repeatedly propagating knowledge in problem 6 produces the following problem: 4.88/2.20 4.88/2.20 7: T: 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 4.88/2.20 4.88/2.20 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.88/2.20 4.88/2.20 (Comp: ar_1*ar_3 + 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.88/2.20 4.88/2.20 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.88/2.20 4.88/2.20 (Comp: ar_1*ar_3 + 2*ar_1, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 4.88/2.20 4.88/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.88/2.20 4.88/2.20 start location: koat_start 4.88/2.20 4.88/2.20 leaf cost: 0 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Complexity upper bound 9*ar_1 + 2*ar_1*ar_3 + 6 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Time: 0.112 sec (SMT: 0.095 sec) 4.88/2.20 4.88/2.20 4.88/2.20 ---------------------------------------- 4.88/2.20 4.88/2.20 (2) 4.88/2.20 BOUNDS(1, n^2) 4.88/2.20 4.88/2.20 ---------------------------------------- 4.88/2.20 4.88/2.20 (3) Loat Proof (FINISHED) 4.88/2.20 4.88/2.20 4.88/2.20 ### Pre-processing the ITS problem ### 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Initial linear ITS problem 4.88/2.20 4.88/2.20 Start location: evalfstart 4.88/2.20 4.88/2.20 0: evalfstart -> evalfentryin : [], cost: 1 4.88/2.20 4.88/2.20 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 4.88/2.20 4.88/2.20 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.88/2.20 4.88/2.20 3: evalfbb4in -> evalfreturnin : [ A>=1+B ], cost: 1 4.88/2.20 4.88/2.20 4: evalfbb2in -> evalfbb1in : [ D>=C ], cost: 1 4.88/2.20 4.88/2.20 5: evalfbb2in -> evalfbb3in : [ C>=1+D ], cost: 1 4.88/2.20 4.88/2.20 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.88/2.20 4.88/2.20 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 4.88/2.20 4.88/2.20 8: evalfreturnin -> evalfstop : [], cost: 1 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Removed unreachable and leaf rules: 4.88/2.20 4.88/2.20 Start location: evalfstart 4.88/2.20 4.88/2.20 0: evalfstart -> evalfentryin : [], cost: 1 4.88/2.20 4.88/2.20 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 4.88/2.20 4.88/2.20 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.88/2.20 4.88/2.20 4: evalfbb2in -> evalfbb1in : [ D>=C ], cost: 1 4.88/2.20 4.88/2.20 5: evalfbb2in -> evalfbb3in : [ C>=1+D ], cost: 1 4.88/2.20 4.88/2.20 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.88/2.20 4.88/2.20 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 ### Simplification by acceleration and chaining ### 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Eliminated locations (on linear paths): 4.88/2.20 4.88/2.20 Start location: evalfstart 4.88/2.20 4.88/2.20 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.88/2.20 4.88/2.20 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.88/2.20 4.88/2.20 10: evalfbb2in -> evalfbb2in : C'=1+C, [ D>=C ], cost: 2 4.88/2.20 4.88/2.20 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+D ], cost: 2 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Accelerating simple loops of location 3. 4.88/2.20 4.88/2.20 Accelerating the following rules: 4.88/2.20 4.88/2.20 10: evalfbb2in -> evalfbb2in : C'=1+C, [ D>=C ], cost: 2 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Accelerated rule 10 with metering function 1-C+D, yielding the new rule 12. 4.88/2.20 4.88/2.20 Removing the simple loops: 10. 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Accelerated all simple loops using metering functions (where possible): 4.88/2.20 4.88/2.20 Start location: evalfstart 4.88/2.20 4.88/2.20 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.88/2.20 4.88/2.20 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.88/2.20 4.88/2.20 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+D ], cost: 2 4.88/2.20 4.88/2.20 12: evalfbb2in -> evalfbb2in : C'=1+D, [ D>=C ], cost: 2-2*C+2*D 4.88/2.20 4.88/2.20 4.88/2.20 4.88/2.20 Chained accelerated rules (with incoming rules): 4.88/2.21 4.88/2.21 Start location: evalfstart 4.88/2.21 4.88/2.21 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.88/2.21 4.88/2.21 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 4.88/2.21 4.88/2.21 13: evalfbb4in -> evalfbb2in : C'=1+D, [ B>=A && D>=1 ], cost: 1+2*D 4.88/2.21 4.88/2.21 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+D ], cost: 2 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Eliminated locations (on tree-shaped paths): 4.88/2.21 4.88/2.21 Start location: evalfstart 4.88/2.21 4.88/2.21 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.88/2.21 4.88/2.21 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1, [ B>=A && 1>=1+D ], cost: 3 4.88/2.21 4.88/2.21 15: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+D, [ B>=A && D>=1 ], cost: 3+2*D 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Accelerating simple loops of location 2. 4.88/2.21 4.88/2.21 Accelerating the following rules: 4.88/2.21 4.88/2.21 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1, [ B>=A && 1>=1+D ], cost: 3 4.88/2.21 4.88/2.21 15: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+D, [ B>=A && D>=1 ], cost: 3+2*D 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Accelerated rule 14 with metering function 1-A+B, yielding the new rule 16. 4.88/2.21 4.88/2.21 Accelerated rule 15 with metering function 1-A+B, yielding the new rule 17. 4.88/2.21 4.88/2.21 Removing the simple loops: 14 15. 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Accelerated all simple loops using metering functions (where possible): 4.88/2.21 4.88/2.21 Start location: evalfstart 4.88/2.21 4.88/2.21 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.88/2.21 4.88/2.21 16: evalfbb4in -> evalfbb4in : A'=1+B, C'=1, [ B>=A && 1>=1+D ], cost: 3-3*A+3*B 4.88/2.21 4.88/2.21 17: evalfbb4in -> evalfbb4in : A'=1+B, C'=1+D, [ B>=A && D>=1 ], cost: 3-2*(-1+A-B)*D-3*A+3*B 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Chained accelerated rules (with incoming rules): 4.88/2.21 4.88/2.21 Start location: evalfstart 4.88/2.21 4.88/2.21 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.88/2.21 4.88/2.21 18: evalfstart -> evalfbb4in : A'=1+B, C'=1, [ B>=1 && 1>=1+D ], cost: 2+3*B 4.88/2.21 4.88/2.21 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+D, [ B>=1 && D>=1 ], cost: 2+2*D*B+3*B 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Removed unreachable locations (and leaf rules with constant cost): 4.88/2.21 4.88/2.21 Start location: evalfstart 4.88/2.21 4.88/2.21 18: evalfstart -> evalfbb4in : A'=1+B, C'=1, [ B>=1 && 1>=1+D ], cost: 2+3*B 4.88/2.21 4.88/2.21 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+D, [ B>=1 && D>=1 ], cost: 2+2*D*B+3*B 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 ### Computing asymptotic complexity ### 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Fully simplified ITS problem 4.88/2.21 4.88/2.21 Start location: evalfstart 4.88/2.21 4.88/2.21 18: evalfstart -> evalfbb4in : A'=1+B, C'=1, [ B>=1 && 1>=1+D ], cost: 2+3*B 4.88/2.21 4.88/2.21 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+D, [ B>=1 && D>=1 ], cost: 2+2*D*B+3*B 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Computing asymptotic complexity for rule 18 4.88/2.21 4.88/2.21 Solved the limit problem by the following transformations: 4.88/2.21 4.88/2.21 Created initial limit problem: 4.88/2.21 4.88/2.21 1-D (+/+!), 2+3*B (+), B (+/+!) [not solved] 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 removing all constraints (solved by SMT) 4.88/2.21 4.88/2.21 resulting limit problem: [solved] 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 applying transformation rule (C) using substitution {D==0,B==n} 4.88/2.21 4.88/2.21 resulting limit problem: 4.88/2.21 4.88/2.21 [solved] 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Solution: 4.88/2.21 4.88/2.21 D / 0 4.88/2.21 4.88/2.21 B / n 4.88/2.21 4.88/2.21 Resulting cost 2+3*n has complexity: Poly(n^1) 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Found new complexity Poly(n^1). 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Computing asymptotic complexity for rule 19 4.88/2.21 4.88/2.21 Solved the limit problem by the following transformations: 4.88/2.21 4.88/2.21 Created initial limit problem: 4.88/2.21 4.88/2.21 2+2*D*B+3*B (+), D (+/+!), B (+/+!) [not solved] 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 removing all constraints (solved by SMT) 4.88/2.21 4.88/2.21 resulting limit problem: [solved] 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 applying transformation rule (C) using substitution {D==n,B==n} 4.88/2.21 4.88/2.21 resulting limit problem: 4.88/2.21 4.88/2.21 [solved] 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Solution: 4.88/2.21 4.88/2.21 D / n 4.88/2.21 4.88/2.21 B / n 4.88/2.21 4.88/2.21 Resulting cost 2+3*n+2*n^2 has complexity: Poly(n^2) 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Found new complexity Poly(n^2). 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 Obtained the following overall complexity (w.r.t. the length of the input n): 4.88/2.21 4.88/2.21 Complexity: Poly(n^2) 4.88/2.21 4.88/2.21 Cpx degree: 2 4.88/2.21 4.88/2.21 Solved cost: 2+3*n+2*n^2 4.88/2.21 4.88/2.21 Rule cost: 2+2*D*B+3*B 4.88/2.21 4.88/2.21 Rule guard: [ B>=1 && D>=1 ] 4.88/2.21 4.88/2.21 4.88/2.21 4.88/2.21 WORST_CASE(Omega(n^2),?) 4.88/2.21 4.88/2.21 4.88/2.21 ---------------------------------------- 4.88/2.21 4.88/2.21 (4) 4.88/2.21 BOUNDS(n^2, INF) 4.88/2.23 EOF