4.26/2.01 WORST_CASE(Omega(n^2), O(n^2)) 4.34/2.36 proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat 4.34/2.36 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.34/2.36 4.34/2.36 4.34/2.36 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 4.34/2.36 4.34/2.36 (0) CpxIntTrs 4.34/2.36 (1) Koat Proof [FINISHED, 23 ms] 4.34/2.36 (2) BOUNDS(1, n^2) 4.34/2.36 (3) Loat Proof [FINISHED, 320 ms] 4.34/2.36 (4) BOUNDS(n^2, INF) 4.34/2.36 4.34/2.36 4.34/2.36 ---------------------------------------- 4.34/2.36 4.34/2.36 (0) 4.34/2.36 Obligation: 4.34/2.36 Complexity Int TRS consisting of the following rules: 4.34/2.36 evalfstart(A, B, C) -> Com_1(evalfentryin(A, B, C)) :|: TRUE 4.34/2.36 evalfentryin(A, B, C) -> Com_1(evalfbb4in(1, B, C)) :|: TRUE 4.34/2.36 evalfbb4in(A, B, C) -> Com_1(evalfbb2in(A, B, A)) :|: B >= A 4.34/2.36 evalfbb4in(A, B, C) -> Com_1(evalfreturnin(A, B, C)) :|: A >= B + 1 4.34/2.36 evalfbb2in(A, B, C) -> Com_1(evalfbb1in(A, B, C)) :|: B >= C 4.34/2.36 evalfbb2in(A, B, C) -> Com_1(evalfbb3in(A, B, C)) :|: C >= B + 1 4.34/2.36 evalfbb1in(A, B, C) -> Com_1(evalfbb2in(A, B, C + 1)) :|: TRUE 4.34/2.36 evalfbb3in(A, B, C) -> Com_1(evalfbb4in(A + 1, B, C)) :|: TRUE 4.34/2.36 evalfreturnin(A, B, C) -> Com_1(evalfstop(A, B, C)) :|: TRUE 4.34/2.36 4.34/2.36 The start-symbols are:[evalfstart_3] 4.34/2.36 4.34/2.36 4.34/2.36 ---------------------------------------- 4.34/2.36 4.34/2.36 (1) Koat Proof (FINISHED) 4.34/2.36 YES(?, 27*ar_1 + 6*ar_1^2 + 6) 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Initial complexity problem: 4.34/2.36 4.34/2.36 1: T: 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.34/2.36 4.34/2.36 start location: koat_start 4.34/2.36 4.34/2.36 leaf cost: 0 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.34/2.36 4.34/2.36 2: T: 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.34/2.36 4.34/2.36 start location: koat_start 4.34/2.36 4.34/2.36 leaf cost: 0 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 A polynomial rank function with 4.34/2.36 4.34/2.36 Pol(evalfstart) = 2 4.34/2.36 4.34/2.36 Pol(evalfentryin) = 2 4.34/2.36 4.34/2.36 Pol(evalfbb4in) = 2 4.34/2.36 4.34/2.36 Pol(evalfbb2in) = 2 4.34/2.36 4.34/2.36 Pol(evalfreturnin) = 1 4.34/2.36 4.34/2.36 Pol(evalfbb1in) = 2 4.34/2.36 4.34/2.36 Pol(evalfbb3in) = 2 4.34/2.36 4.34/2.36 Pol(evalfstop) = 0 4.34/2.36 4.34/2.36 Pol(koat_start) = 2 4.34/2.36 4.34/2.36 orients all transitions weakly and the transitions 4.34/2.36 4.34/2.36 evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 strictly and produces the following problem: 4.34/2.36 4.34/2.36 3: T: 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.34/2.36 4.34/2.36 start location: koat_start 4.34/2.36 4.34/2.36 leaf cost: 0 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 A polynomial rank function with 4.34/2.36 4.34/2.36 Pol(evalfstart) = V_2 4.34/2.36 4.34/2.36 Pol(evalfentryin) = V_2 4.34/2.36 4.34/2.36 Pol(evalfbb4in) = -V_1 + V_2 + 1 4.34/2.36 4.34/2.36 Pol(evalfbb2in) = -V_1 + V_2 4.34/2.36 4.34/2.36 Pol(evalfreturnin) = -V_1 + V_2 4.34/2.36 4.34/2.36 Pol(evalfbb1in) = -V_1 + V_2 4.34/2.36 4.34/2.36 Pol(evalfbb3in) = -V_1 + V_2 4.34/2.36 4.34/2.36 Pol(evalfstop) = -V_1 + V_2 4.34/2.36 4.34/2.36 Pol(koat_start) = V_2 4.34/2.36 4.34/2.36 orients all transitions weakly and the transition 4.34/2.36 4.34/2.36 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 strictly and produces the following problem: 4.34/2.36 4.34/2.36 4: T: 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.34/2.36 4.34/2.36 start location: koat_start 4.34/2.36 4.34/2.36 leaf cost: 0 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 A polynomial rank function with 4.34/2.36 4.34/2.36 Pol(evalfbb3in) = 1 4.34/2.36 4.34/2.36 Pol(evalfbb4in) = 0 4.34/2.36 4.34/2.36 Pol(evalfbb2in) = 2 4.34/2.36 4.34/2.36 Pol(evalfbb1in) = 2 4.34/2.36 4.34/2.36 and size complexities 4.34/2.36 4.34/2.36 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.34/2.36 4.34/2.36 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.34/2.36 4.34/2.36 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = ? 4.34/2.36 4.34/2.36 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-0) = ? 4.34/2.36 4.34/2.36 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-0) = ? 4.34/2.36 4.34/2.36 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ]", 0-0) = ? 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ]", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ]", 0-0) = ? 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ]", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-0) = ? 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ]", 0-0) = ? 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ]", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-0) = 1 4.34/2.36 4.34/2.36 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-2) = ar_2 4.34/2.36 4.34/2.36 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.34/2.36 4.34/2.36 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.34/2.36 4.34/2.36 orients the transitions 4.34/2.36 4.34/2.36 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 weakly and the transitions 4.34/2.36 4.34/2.36 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 strictly and produces the following problem: 4.34/2.36 4.34/2.36 5: T: 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.34/2.36 4.34/2.36 start location: koat_start 4.34/2.36 4.34/2.36 leaf cost: 0 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 A polynomial rank function with 4.34/2.36 4.34/2.36 Pol(evalfbb2in) = V_2 - V_3 + 1 4.34/2.36 4.34/2.36 Pol(evalfbb1in) = V_2 - V_3 4.34/2.36 4.34/2.36 and size complexities 4.34/2.36 4.34/2.36 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.34/2.36 4.34/2.36 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.34/2.36 4.34/2.36 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = 2*ar_1 + 20 4.34/2.36 4.34/2.36 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-0) = 2*ar_1 + 4 4.34/2.36 4.34/2.36 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2))", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-0) = 2*ar_1 + 4 4.34/2.36 4.34/2.36 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ]", 0-0) = 2*ar_1 + 4 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ]", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ]", 0-0) = 2*ar_1 + 4 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ]", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-0) = 2*ar_1 + 10 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ]", 0-0) = 2*ar_1 + 4 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ]", 0-2) = 2*ar_1 + 10 4.34/2.36 4.34/2.36 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-0) = 1 4.34/2.36 4.34/2.36 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2))", 0-2) = ar_2 4.34/2.36 4.34/2.36 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.34/2.36 4.34/2.36 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.34/2.36 4.34/2.36 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.34/2.36 4.34/2.36 orients the transitions 4.34/2.36 4.34/2.36 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 weakly and the transition 4.34/2.36 4.34/2.36 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 strictly and produces the following problem: 4.34/2.36 4.34/2.36 6: T: 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: 3*ar_1^2 + 11*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.34/2.36 4.34/2.36 start location: koat_start 4.34/2.36 4.34/2.36 leaf cost: 0 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Repeatedly propagating knowledge in problem 6 produces the following problem: 4.34/2.36 4.34/2.36 7: T: 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 ] 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: 3*ar_1^2 + 11*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 4.34/2.36 4.34/2.36 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.34/2.36 4.34/2.36 (Comp: 3*ar_1^2 + 11*ar_1, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.34/2.36 4.34/2.36 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.34/2.36 4.34/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.34/2.36 4.34/2.36 start location: koat_start 4.34/2.36 4.34/2.36 leaf cost: 0 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Complexity upper bound 27*ar_1 + 6*ar_1^2 + 6 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Time: 0.092 sec (SMT: 0.082 sec) 4.34/2.36 4.34/2.36 4.34/2.36 ---------------------------------------- 4.34/2.36 4.34/2.36 (2) 4.34/2.36 BOUNDS(1, n^2) 4.34/2.36 4.34/2.36 ---------------------------------------- 4.34/2.36 4.34/2.36 (3) Loat Proof (FINISHED) 4.34/2.36 4.34/2.36 4.34/2.36 ### Pre-processing the ITS problem ### 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Initial linear ITS problem 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 0: evalfstart -> evalfentryin : [], cost: 1 4.34/2.36 4.34/2.36 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 4.34/2.36 4.34/2.36 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=A ], cost: 1 4.34/2.36 4.34/2.36 3: evalfbb4in -> evalfreturnin : [ A>=1+B ], cost: 1 4.34/2.36 4.34/2.36 4: evalfbb2in -> evalfbb1in : [ B>=C ], cost: 1 4.34/2.36 4.34/2.36 5: evalfbb2in -> evalfbb3in : [ C>=1+B ], cost: 1 4.34/2.36 4.34/2.36 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.34/2.36 4.34/2.36 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 4.34/2.36 4.34/2.36 8: evalfreturnin -> evalfstop : [], cost: 1 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Removed unreachable and leaf rules: 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 0: evalfstart -> evalfentryin : [], cost: 1 4.34/2.36 4.34/2.36 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 4.34/2.36 4.34/2.36 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=A ], cost: 1 4.34/2.36 4.34/2.36 4: evalfbb2in -> evalfbb1in : [ B>=C ], cost: 1 4.34/2.36 4.34/2.36 5: evalfbb2in -> evalfbb3in : [ C>=1+B ], cost: 1 4.34/2.36 4.34/2.36 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.34/2.36 4.34/2.36 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 ### Simplification by acceleration and chaining ### 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Eliminated locations (on linear paths): 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.34/2.36 4.34/2.36 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=A ], cost: 1 4.34/2.36 4.34/2.36 10: evalfbb2in -> evalfbb2in : C'=1+C, [ B>=C ], cost: 2 4.34/2.36 4.34/2.36 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+B ], cost: 2 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Accelerating simple loops of location 3. 4.34/2.36 4.34/2.36 Accelerating the following rules: 4.34/2.36 4.34/2.36 10: evalfbb2in -> evalfbb2in : C'=1+C, [ B>=C ], cost: 2 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Accelerated rule 10 with metering function 1-C+B, yielding the new rule 12. 4.34/2.36 4.34/2.36 Removing the simple loops: 10. 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Accelerated all simple loops using metering functions (where possible): 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.34/2.36 4.34/2.36 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=A ], cost: 1 4.34/2.36 4.34/2.36 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+B ], cost: 2 4.34/2.36 4.34/2.36 12: evalfbb2in -> evalfbb2in : C'=1+B, [ B>=C ], cost: 2-2*C+2*B 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Chained accelerated rules (with incoming rules): 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.34/2.36 4.34/2.36 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=A ], cost: 1 4.34/2.36 4.34/2.36 13: evalfbb4in -> evalfbb2in : C'=1+B, [ B>=A ], cost: 3-2*A+2*B 4.34/2.36 4.34/2.36 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+B ], cost: 2 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Eliminated locations (on tree-shaped paths): 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.34/2.36 4.34/2.36 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+B, [ B>=A ], cost: 5-2*A+2*B 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Accelerating simple loops of location 2. 4.34/2.36 4.34/2.36 Accelerating the following rules: 4.34/2.36 4.34/2.36 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+B, [ B>=A ], cost: 5-2*A+2*B 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Accelerated rule 14 with metering function 1-A+B, yielding the new rule 15. 4.34/2.36 4.34/2.36 Removing the simple loops: 14. 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Accelerated all simple loops using metering functions (where possible): 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.34/2.36 4.34/2.36 15: evalfbb4in -> evalfbb4in : A'=1+B, C'=1+B, [ B>=A ], cost: 6+2*(-1+A-B)*A-6*A-2*(-1+A-B)*B-(-1+A-B)^2+6*B 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Chained accelerated rules (with incoming rules): 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 4.34/2.36 4.34/2.36 16: evalfstart -> evalfbb4in : A'=1+B, C'=1+B, [ B>=1 ], cost: 2+B^2+4*B 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Removed unreachable locations (and leaf rules with constant cost): 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 16: evalfstart -> evalfbb4in : A'=1+B, C'=1+B, [ B>=1 ], cost: 2+B^2+4*B 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 ### Computing asymptotic complexity ### 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Fully simplified ITS problem 4.34/2.36 4.34/2.36 Start location: evalfstart 4.34/2.36 4.34/2.36 16: evalfstart -> evalfbb4in : A'=1+B, C'=1+B, [ B>=1 ], cost: 2+B^2+4*B 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Computing asymptotic complexity for rule 16 4.34/2.36 4.34/2.36 Solved the limit problem by the following transformations: 4.34/2.36 4.34/2.36 Created initial limit problem: 4.34/2.36 4.34/2.36 2+B^2+4*B (+), B (+/+!) [not solved] 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 removing all constraints (solved by SMT) 4.34/2.36 4.34/2.36 resulting limit problem: [solved] 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 applying transformation rule (C) using substitution {B==n} 4.34/2.36 4.34/2.36 resulting limit problem: 4.34/2.36 4.34/2.36 [solved] 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Solution: 4.34/2.36 4.34/2.36 B / n 4.34/2.36 4.34/2.36 Resulting cost 2+n^2+4*n has complexity: Poly(n^2) 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Found new complexity Poly(n^2). 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 Obtained the following overall complexity (w.r.t. the length of the input n): 4.34/2.36 4.34/2.36 Complexity: Poly(n^2) 4.34/2.36 4.34/2.36 Cpx degree: 2 4.34/2.36 4.34/2.36 Solved cost: 2+n^2+4*n 4.34/2.36 4.34/2.36 Rule cost: 2+B^2+4*B 4.34/2.36 4.34/2.36 Rule guard: [ B>=1 ] 4.34/2.36 4.34/2.36 4.34/2.36 4.34/2.36 WORST_CASE(Omega(n^2),?) 4.34/2.36 4.34/2.36 4.34/2.36 ---------------------------------------- 4.34/2.36 4.34/2.36 (4) 4.34/2.36 BOUNDS(n^2, INF) 4.34/2.44 EOF