3.60/2.26 WORST_CASE(Omega(n^2), O(n^2)) 3.60/2.27 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.60/2.27 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.60/2.27 3.60/2.27 3.60/2.27 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 3.60/2.27 3.60/2.27 (0) CpxIntTrs 3.60/2.27 (1) Koat Proof [FINISHED, 117 ms] 3.60/2.27 (2) BOUNDS(1, n^2) 3.60/2.27 (3) Loat Proof [FINISHED, 515 ms] 3.60/2.27 (4) BOUNDS(n^2, INF) 3.60/2.27 3.60/2.27 3.60/2.27 ---------------------------------------- 3.60/2.27 3.60/2.27 (0) 3.60/2.27 Obligation: 3.60/2.27 Complexity Int TRS consisting of the following rules: 3.60/2.27 evalfstart(A, B, C, D) -> Com_1(evalfentryin(A, B, C, D)) :|: TRUE 3.60/2.27 evalfentryin(A, B, C, D) -> Com_1(evalfbb4in(1, B, C, D)) :|: TRUE 3.60/2.27 evalfbb4in(A, B, C, D) -> Com_1(evalfbb2in(A, B, 1, D)) :|: B >= A 3.60/2.27 evalfbb4in(A, B, C, D) -> Com_1(evalfreturnin(A, B, C, D)) :|: A >= B + 1 3.60/2.27 evalfbb2in(A, B, C, D) -> Com_1(evalfbb1in(A, B, C, D)) :|: D >= C 3.60/2.27 evalfbb2in(A, B, C, D) -> Com_1(evalfbb3in(A, B, C, D)) :|: C >= D + 1 3.60/2.27 evalfbb1in(A, B, C, D) -> Com_1(evalfbb2in(A, B, C + 1, D)) :|: TRUE 3.60/2.27 evalfbb3in(A, B, C, D) -> Com_1(evalfbb4in(A + 1, B, C, D)) :|: TRUE 3.60/2.27 evalfreturnin(A, B, C, D) -> Com_1(evalfstop(A, B, C, D)) :|: TRUE 3.60/2.27 3.60/2.27 The start-symbols are:[evalfstart_4] 3.60/2.27 3.60/2.27 3.60/2.27 ---------------------------------------- 3.60/2.27 3.60/2.27 (1) Koat Proof (FINISHED) 3.60/2.27 YES(?, 9*ar_1 + 2*ar_1*ar_3 + 6) 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Initial complexity problem: 3.60/2.27 3.60/2.27 1: T: 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.60/2.27 3.60/2.27 start location: koat_start 3.60/2.27 3.60/2.27 leaf cost: 0 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.60/2.27 3.60/2.27 2: T: 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.60/2.27 3.60/2.27 start location: koat_start 3.60/2.27 3.60/2.27 leaf cost: 0 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 A polynomial rank function with 3.60/2.27 3.60/2.27 Pol(evalfstart) = 2 3.60/2.27 3.60/2.27 Pol(evalfentryin) = 2 3.60/2.27 3.60/2.27 Pol(evalfbb4in) = 2 3.60/2.27 3.60/2.27 Pol(evalfbb2in) = 2 3.60/2.27 3.60/2.27 Pol(evalfreturnin) = 1 3.60/2.27 3.60/2.27 Pol(evalfbb1in) = 2 3.60/2.27 3.60/2.27 Pol(evalfbb3in) = 2 3.60/2.27 3.60/2.27 Pol(evalfstop) = 0 3.60/2.27 3.60/2.27 Pol(koat_start) = 2 3.60/2.27 3.60/2.27 orients all transitions weakly and the transitions 3.60/2.27 3.60/2.27 evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 strictly and produces the following problem: 3.60/2.27 3.60/2.27 3: T: 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.60/2.27 3.60/2.27 start location: koat_start 3.60/2.27 3.60/2.27 leaf cost: 0 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 A polynomial rank function with 3.60/2.27 3.60/2.27 Pol(evalfstart) = V_2 3.60/2.27 3.60/2.27 Pol(evalfentryin) = V_2 3.60/2.27 3.60/2.27 Pol(evalfbb4in) = -V_1 + V_2 + 1 3.60/2.27 3.60/2.27 Pol(evalfbb2in) = -V_1 + V_2 3.60/2.27 3.60/2.27 Pol(evalfreturnin) = -V_1 + V_2 3.60/2.27 3.60/2.27 Pol(evalfbb1in) = -V_1 + V_2 3.60/2.27 3.60/2.27 Pol(evalfbb3in) = -V_1 + V_2 3.60/2.27 3.60/2.27 Pol(evalfstop) = -V_1 + V_2 3.60/2.27 3.60/2.27 Pol(koat_start) = V_2 3.60/2.27 3.60/2.27 orients all transitions weakly and the transition 3.60/2.27 3.60/2.27 evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 strictly and produces the following problem: 3.60/2.27 3.60/2.27 4: T: 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.60/2.27 3.60/2.27 start location: koat_start 3.60/2.27 3.60/2.27 leaf cost: 0 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 A polynomial rank function with 3.60/2.27 3.60/2.27 Pol(evalfbb3in) = 1 3.60/2.27 3.60/2.27 Pol(evalfbb4in) = 0 3.60/2.27 3.60/2.27 Pol(evalfbb2in) = 2 3.60/2.27 3.60/2.27 Pol(evalfbb1in) = 2 3.60/2.27 3.60/2.27 and size complexities 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-0) = ar_0 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-2) = ar_2 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-0) = ? 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-0) = ? 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-0) = ? 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-0) = ? 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-0) = ? 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-0) = ? 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-0) = ? 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-2) = 1 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-0) = 1 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-2) = ar_2 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-0) = ar_0 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-2) = ar_2 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 orients the transitions 3.60/2.27 3.60/2.27 evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 weakly and the transitions 3.60/2.27 3.60/2.27 evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 strictly and produces the following problem: 3.60/2.27 3.60/2.27 5: T: 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.60/2.27 3.60/2.27 start location: koat_start 3.60/2.27 3.60/2.27 leaf cost: 0 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 A polynomial rank function with 3.60/2.27 3.60/2.27 Pol(evalfbb2in) = -V_3 + V_4 + 1 3.60/2.27 3.60/2.27 Pol(evalfbb1in) = -V_3 + V_4 3.60/2.27 3.60/2.27 and size complexities 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-0) = ar_0 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-2) = ar_2 3.60/2.27 3.60/2.27 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-0) = 2*ar_1 + 20 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-0) = 2*ar_1 + 4 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-0) = 2*ar_1 + 4 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-0) = 2*ar_1 + 4 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-0) = 2*ar_1 + 4 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-0) = 2*ar_1 + 10 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-0) = 2*ar_1 + 4 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-2) = 1 3.60/2.27 3.60/2.27 S("evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ]", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-0) = 1 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-2) = ar_2 3.60/2.27 3.60/2.27 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-0) = ar_0 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-2) = ar_2 3.60/2.27 3.60/2.27 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 3.60/2.27 3.60/2.27 orients the transitions 3.60/2.27 3.60/2.27 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 weakly and the transition 3.60/2.27 3.60/2.27 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 strictly and produces the following problem: 3.60/2.27 3.60/2.27 6: T: 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ar_1*ar_3 + 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.60/2.27 3.60/2.27 start location: koat_start 3.60/2.27 3.60/2.27 leaf cost: 0 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Repeatedly propagating knowledge in problem 6 produces the following problem: 3.60/2.27 3.60/2.27 7: T: 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: ar_1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, 1, ar_3)) [ ar_1 >= ar_0 ] 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ar_1*ar_3 + 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 3.60/2.27 3.60/2.27 (Comp: 2*ar_1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 3.60/2.27 3.60/2.27 (Comp: ar_1*ar_3 + 2*ar_1, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2*ar_1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb4in(ar_0 + 1, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 3.60/2.27 3.60/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.60/2.27 3.60/2.27 start location: koat_start 3.60/2.27 3.60/2.27 leaf cost: 0 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Complexity upper bound 9*ar_1 + 2*ar_1*ar_3 + 6 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Time: 0.120 sec (SMT: 0.103 sec) 3.60/2.27 3.60/2.27 3.60/2.27 ---------------------------------------- 3.60/2.27 3.60/2.27 (2) 3.60/2.27 BOUNDS(1, n^2) 3.60/2.27 3.60/2.27 ---------------------------------------- 3.60/2.27 3.60/2.27 (3) Loat Proof (FINISHED) 3.60/2.27 3.60/2.27 3.60/2.27 ### Pre-processing the ITS problem ### 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Initial linear ITS problem 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 0: evalfstart -> evalfentryin : [], cost: 1 3.60/2.27 3.60/2.27 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 3.60/2.27 3.60/2.27 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 3.60/2.27 3.60/2.27 3: evalfbb4in -> evalfreturnin : [ A>=1+B ], cost: 1 3.60/2.27 3.60/2.27 4: evalfbb2in -> evalfbb1in : [ D>=C ], cost: 1 3.60/2.27 3.60/2.27 5: evalfbb2in -> evalfbb3in : [ C>=1+D ], cost: 1 3.60/2.27 3.60/2.27 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 3.60/2.27 3.60/2.27 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 3.60/2.27 3.60/2.27 8: evalfreturnin -> evalfstop : [], cost: 1 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Removed unreachable and leaf rules: 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 0: evalfstart -> evalfentryin : [], cost: 1 3.60/2.27 3.60/2.27 1: evalfentryin -> evalfbb4in : A'=1, [], cost: 1 3.60/2.27 3.60/2.27 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 3.60/2.27 3.60/2.27 4: evalfbb2in -> evalfbb1in : [ D>=C ], cost: 1 3.60/2.27 3.60/2.27 5: evalfbb2in -> evalfbb3in : [ C>=1+D ], cost: 1 3.60/2.27 3.60/2.27 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 3.60/2.27 3.60/2.27 7: evalfbb3in -> evalfbb4in : A'=1+A, [], cost: 1 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 ### Simplification by acceleration and chaining ### 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Eliminated locations (on linear paths): 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 3.60/2.27 3.60/2.27 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 3.60/2.27 3.60/2.27 10: evalfbb2in -> evalfbb2in : C'=1+C, [ D>=C ], cost: 2 3.60/2.27 3.60/2.27 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+D ], cost: 2 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Accelerating simple loops of location 3. 3.60/2.27 3.60/2.27 Accelerating the following rules: 3.60/2.27 3.60/2.27 10: evalfbb2in -> evalfbb2in : C'=1+C, [ D>=C ], cost: 2 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Accelerated rule 10 with metering function 1-C+D, yielding the new rule 12. 3.60/2.27 3.60/2.27 Removing the simple loops: 10. 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Accelerated all simple loops using metering functions (where possible): 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 3.60/2.27 3.60/2.27 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 3.60/2.27 3.60/2.27 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+D ], cost: 2 3.60/2.27 3.60/2.27 12: evalfbb2in -> evalfbb2in : C'=1+D, [ D>=C ], cost: 2-2*C+2*D 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Chained accelerated rules (with incoming rules): 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 3.60/2.27 3.60/2.27 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=A ], cost: 1 3.60/2.27 3.60/2.27 13: evalfbb4in -> evalfbb2in : C'=1+D, [ B>=A && D>=1 ], cost: 1+2*D 3.60/2.27 3.60/2.27 11: evalfbb2in -> evalfbb4in : A'=1+A, [ C>=1+D ], cost: 2 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Eliminated locations (on tree-shaped paths): 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 3.60/2.27 3.60/2.27 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1, [ B>=A && 1>=1+D ], cost: 3 3.60/2.27 3.60/2.27 15: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+D, [ B>=A && D>=1 ], cost: 3+2*D 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Accelerating simple loops of location 2. 3.60/2.27 3.60/2.27 Accelerating the following rules: 3.60/2.27 3.60/2.27 14: evalfbb4in -> evalfbb4in : A'=1+A, C'=1, [ B>=A && 1>=1+D ], cost: 3 3.60/2.27 3.60/2.27 15: evalfbb4in -> evalfbb4in : A'=1+A, C'=1+D, [ B>=A && D>=1 ], cost: 3+2*D 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Accelerated rule 14 with metering function 1-A+B, yielding the new rule 16. 3.60/2.27 3.60/2.27 Accelerated rule 15 with metering function 1-A+B, yielding the new rule 17. 3.60/2.27 3.60/2.27 Removing the simple loops: 14 15. 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Accelerated all simple loops using metering functions (where possible): 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 3.60/2.27 3.60/2.27 16: evalfbb4in -> evalfbb4in : A'=1+B, C'=1, [ B>=A && 1>=1+D ], cost: 3-3*A+3*B 3.60/2.27 3.60/2.27 17: evalfbb4in -> evalfbb4in : A'=1+B, C'=1+D, [ B>=A && D>=1 ], cost: 3-2*(-1+A-B)*D-3*A+3*B 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Chained accelerated rules (with incoming rules): 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 9: evalfstart -> evalfbb4in : A'=1, [], cost: 2 3.60/2.27 3.60/2.27 18: evalfstart -> evalfbb4in : A'=1+B, C'=1, [ B>=1 && 1>=1+D ], cost: 2+3*B 3.60/2.27 3.60/2.27 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+D, [ B>=1 && D>=1 ], cost: 2+2*D*B+3*B 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Removed unreachable locations (and leaf rules with constant cost): 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 18: evalfstart -> evalfbb4in : A'=1+B, C'=1, [ B>=1 && 1>=1+D ], cost: 2+3*B 3.60/2.27 3.60/2.27 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+D, [ B>=1 && D>=1 ], cost: 2+2*D*B+3*B 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 ### Computing asymptotic complexity ### 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Fully simplified ITS problem 3.60/2.27 3.60/2.27 Start location: evalfstart 3.60/2.27 3.60/2.27 18: evalfstart -> evalfbb4in : A'=1+B, C'=1, [ B>=1 && 1>=1+D ], cost: 2+3*B 3.60/2.27 3.60/2.27 19: evalfstart -> evalfbb4in : A'=1+B, C'=1+D, [ B>=1 && D>=1 ], cost: 2+2*D*B+3*B 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Computing asymptotic complexity for rule 18 3.60/2.27 3.60/2.27 Solved the limit problem by the following transformations: 3.60/2.27 3.60/2.27 Created initial limit problem: 3.60/2.27 3.60/2.27 1-D (+/+!), 2+3*B (+), B (+/+!) [not solved] 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 removing all constraints (solved by SMT) 3.60/2.27 3.60/2.27 resulting limit problem: [solved] 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 applying transformation rule (C) using substitution {D==0,B==n} 3.60/2.27 3.60/2.27 resulting limit problem: 3.60/2.27 3.60/2.27 [solved] 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Solution: 3.60/2.27 3.60/2.27 D / 0 3.60/2.27 3.60/2.27 B / n 3.60/2.27 3.60/2.27 Resulting cost 2+3*n has complexity: Poly(n^1) 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Found new complexity Poly(n^1). 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Computing asymptotic complexity for rule 19 3.60/2.27 3.60/2.27 Solved the limit problem by the following transformations: 3.60/2.27 3.60/2.27 Created initial limit problem: 3.60/2.27 3.60/2.27 2+2*D*B+3*B (+), D (+/+!), B (+/+!) [not solved] 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 removing all constraints (solved by SMT) 3.60/2.27 3.60/2.27 resulting limit problem: [solved] 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 applying transformation rule (C) using substitution {D==n,B==n} 3.60/2.27 3.60/2.27 resulting limit problem: 3.60/2.27 3.60/2.27 [solved] 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Solution: 3.60/2.27 3.60/2.27 D / n 3.60/2.27 3.60/2.27 B / n 3.60/2.27 3.60/2.27 Resulting cost 2+3*n+2*n^2 has complexity: Poly(n^2) 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Found new complexity Poly(n^2). 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 Obtained the following overall complexity (w.r.t. the length of the input n): 3.60/2.27 3.60/2.27 Complexity: Poly(n^2) 3.60/2.27 3.60/2.27 Cpx degree: 2 3.60/2.27 3.60/2.27 Solved cost: 2+3*n+2*n^2 3.60/2.27 3.60/2.27 Rule cost: 2+2*D*B+3*B 3.60/2.27 3.60/2.27 Rule guard: [ B>=1 && D>=1 ] 3.60/2.27 3.60/2.27 3.60/2.27 3.60/2.27 WORST_CASE(Omega(n^2),?) 3.60/2.27 3.60/2.27 3.60/2.27 ---------------------------------------- 3.60/2.27 3.60/2.27 (4) 3.60/2.27 BOUNDS(n^2, INF) 4.82/2.29 EOF