4.65/2.15 WORST_CASE(Omega(n^2), O(n^2)) 4.65/2.15 proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat 4.65/2.15 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.65/2.15 4.65/2.15 4.65/2.15 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 4.65/2.15 4.65/2.15 (0) CpxIntTrs 4.65/2.15 (1) Koat Proof [FINISHED, 9 ms] 4.65/2.15 (2) BOUNDS(1, n^2) 4.65/2.15 (3) Loat Proof [FINISHED, 507 ms] 4.65/2.15 (4) BOUNDS(n^2, INF) 4.65/2.15 4.65/2.15 4.65/2.15 ---------------------------------------- 4.65/2.15 4.65/2.15 (0) 4.65/2.15 Obligation: 4.65/2.15 Complexity Int TRS consisting of the following rules: 4.65/2.15 evalfstart(A, B, C) -> Com_1(evalfentryin(A, B, C)) :|: TRUE 4.65/2.15 evalfentryin(A, B, C) -> Com_1(evalfbb4in(B, A, C)) :|: TRUE 4.65/2.15 evalfbb4in(A, B, C) -> Com_1(evalfbb2in(A, B, 1)) :|: B >= 1 4.65/2.15 evalfbb4in(A, B, C) -> Com_1(evalfreturnin(A, B, C)) :|: 0 >= B 4.65/2.15 evalfbb2in(A, B, C) -> Com_1(evalfbb1in(A, B, C)) :|: A >= C 4.65/2.15 evalfbb2in(A, B, C) -> Com_1(evalfbb3in(A, B, C)) :|: C >= A + 1 4.65/2.15 evalfbb1in(A, B, C) -> Com_1(evalfbb2in(A, B, C + 1)) :|: TRUE 4.65/2.15 evalfbb3in(A, B, C) -> Com_1(evalfbb4in(A, B - 1, C)) :|: TRUE 4.65/2.15 evalfreturnin(A, B, C) -> Com_1(evalfstop(A, B, C)) :|: TRUE 4.65/2.15 4.65/2.15 The start-symbols are:[evalfstart_3] 4.65/2.15 4.65/2.15 4.65/2.15 ---------------------------------------- 4.65/2.15 4.65/2.15 (1) Koat Proof (FINISHED) 4.65/2.15 YES(?, 9*ar_0 + 2*ar_0*ar_1 + 2*ar_1 + 15) 4.65/2.15 4.65/2.15 4.65/2.15 4.65/2.15 Initial complexity problem: 4.65/2.15 4.65/2.15 1: T: 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.15 4.65/2.15 start location: koat_start 4.65/2.15 4.65/2.15 leaf cost: 0 4.65/2.15 4.65/2.15 4.65/2.15 4.65/2.15 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.65/2.15 4.65/2.15 2: T: 4.65/2.15 4.65/2.15 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.15 4.65/2.15 start location: koat_start 4.65/2.15 4.65/2.15 leaf cost: 0 4.65/2.15 4.65/2.15 4.65/2.15 4.65/2.15 A polynomial rank function with 4.65/2.15 4.65/2.15 Pol(evalfstart) = 2 4.65/2.15 4.65/2.15 Pol(evalfentryin) = 2 4.65/2.15 4.65/2.15 Pol(evalfbb4in) = 2 4.65/2.15 4.65/2.15 Pol(evalfbb2in) = 2 4.65/2.15 4.65/2.15 Pol(evalfreturnin) = 1 4.65/2.15 4.65/2.15 Pol(evalfbb1in) = 2 4.65/2.15 4.65/2.15 Pol(evalfbb3in) = 2 4.65/2.15 4.65/2.15 Pol(evalfstop) = 0 4.65/2.15 4.65/2.15 Pol(koat_start) = 2 4.65/2.15 4.65/2.15 orients all transitions weakly and the transitions 4.65/2.15 4.65/2.15 evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.15 4.65/2.15 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.15 4.65/2.15 strictly and produces the following problem: 4.65/2.15 4.65/2.15 3: T: 4.65/2.15 4.65/2.15 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.15 4.65/2.15 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.15 4.65/2.15 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.15 4.65/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.15 4.65/2.15 start location: koat_start 4.65/2.15 4.65/2.15 leaf cost: 0 4.65/2.15 4.65/2.15 4.65/2.15 4.65/2.15 A polynomial rank function with 4.65/2.15 4.65/2.15 Pol(evalfstart) = V_1 + 1 4.65/2.15 4.65/2.15 Pol(evalfentryin) = V_1 + 1 4.65/2.15 4.65/2.15 Pol(evalfbb4in) = V_2 + 1 4.65/2.16 4.65/2.16 Pol(evalfbb2in) = V_2 4.65/2.16 4.65/2.16 Pol(evalfreturnin) = V_2 4.65/2.16 4.65/2.16 Pol(evalfbb1in) = V_2 4.65/2.16 4.65/2.16 Pol(evalfbb3in) = V_2 4.65/2.16 4.65/2.16 Pol(evalfstop) = V_2 4.65/2.16 4.65/2.16 Pol(koat_start) = V_1 + 1 4.65/2.16 4.65/2.16 orients all transitions weakly and the transition 4.65/2.16 4.65/2.16 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.16 4.65/2.16 strictly and produces the following problem: 4.65/2.16 4.65/2.16 4: T: 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 4.65/2.16 4.65/2.16 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.16 4.65/2.16 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.16 4.65/2.16 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.16 4.65/2.16 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.16 4.65/2.16 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.16 4.65/2.16 start location: koat_start 4.65/2.16 4.65/2.16 leaf cost: 0 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 A polynomial rank function with 4.65/2.16 4.65/2.16 Pol(evalfbb3in) = 1 4.65/2.16 4.65/2.16 Pol(evalfbb4in) = 0 4.65/2.16 4.65/2.16 Pol(evalfbb2in) = 2 4.65/2.16 4.65/2.16 Pol(evalfbb1in) = 2 4.65/2.16 4.65/2.16 and size complexities 4.65/2.16 4.65/2.16 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.65/2.16 4.65/2.16 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.65/2.16 4.65/2.16 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.65/2.16 4.65/2.16 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = ? 4.65/2.16 4.65/2.16 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-1) = ? 4.65/2.16 4.65/2.16 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-1) = ? 4.65/2.16 4.65/2.16 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-1) = ? 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-1) = ? 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-1) = ? 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ]", 0-1) = ? 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ]", 0-2) = 1 4.65/2.16 4.65/2.16 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-1) = ar_0 4.65/2.16 4.65/2.16 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-2) = ar_2 4.65/2.16 4.65/2.16 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.65/2.16 4.65/2.16 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.65/2.16 4.65/2.16 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.16 4.65/2.16 orients the transitions 4.65/2.16 4.65/2.16 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.16 4.65/2.16 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.16 4.65/2.16 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.16 4.65/2.16 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.16 4.65/2.16 weakly and the transitions 4.65/2.16 4.65/2.16 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.16 4.65/2.16 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.16 4.65/2.16 strictly and produces the following problem: 4.65/2.16 4.65/2.16 5: T: 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 4.65/2.16 4.65/2.16 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.16 4.65/2.16 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.16 4.65/2.16 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.16 4.65/2.16 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.16 4.65/2.16 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.16 4.65/2.16 start location: koat_start 4.65/2.16 4.65/2.16 leaf cost: 0 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 A polynomial rank function with 4.65/2.16 4.65/2.16 Pol(evalfbb2in) = V_1 - V_3 + 1 4.65/2.16 4.65/2.16 Pol(evalfbb1in) = V_1 - V_3 4.65/2.16 4.65/2.16 and size complexities 4.65/2.16 4.65/2.16 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.65/2.16 4.65/2.16 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.65/2.16 4.65/2.16 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.65/2.16 4.65/2.16 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = 3*ar_0 + 162 4.65/2.16 4.65/2.16 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-1) = 3*ar_0 + 18 4.65/2.16 4.65/2.16 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-1) = 3*ar_0 + 18 4.65/2.16 4.65/2.16 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1))", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-1) = 3*ar_0 + 18 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ]", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-1) = 3*ar_0 + 18 4.65/2.16 4.65/2.16 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ]", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-1) = 3*ar_0 + 54 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-2) = ? 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ]", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ]", 0-1) = 3*ar_0 + 18 4.65/2.16 4.65/2.16 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ]", 0-2) = 1 4.65/2.16 4.65/2.16 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-0) = ar_1 4.65/2.16 4.65/2.16 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-1) = ar_0 4.65/2.16 4.65/2.16 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-2) = ar_2 4.65/2.16 4.65/2.16 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.65/2.16 4.65/2.16 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.65/2.16 4.65/2.16 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.16 4.65/2.16 orients the transitions 4.65/2.16 4.65/2.16 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.16 4.65/2.16 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.16 4.65/2.16 weakly and the transition 4.65/2.16 4.65/2.16 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.16 4.65/2.16 strictly and produces the following problem: 4.65/2.16 4.65/2.16 6: T: 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 4.65/2.16 4.65/2.16 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.16 4.65/2.16 (Comp: ar_0*ar_1 + ar_1 + 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.16 4.65/2.16 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.16 4.65/2.16 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.16 4.65/2.16 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.16 4.65/2.16 start location: koat_start 4.65/2.16 4.65/2.16 leaf cost: 0 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Repeatedly propagating knowledge in problem 6 produces the following problem: 4.65/2.16 4.65/2.16 7: T: 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 4.65/2.16 4.65/2.16 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, 1)) [ ar_1 >= 1 ] 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 4.65/2.16 4.65/2.16 (Comp: ar_0*ar_1 + ar_1 + 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 4.65/2.16 4.65/2.16 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 4.65/2.16 4.65/2.16 (Comp: ar_0*ar_1 + ar_1 + 2*ar_0 + 2, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 + 1)) 4.65/2.16 4.65/2.16 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 4.65/2.16 4.65/2.16 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.16 4.65/2.16 start location: koat_start 4.65/2.16 4.65/2.16 leaf cost: 0 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Complexity upper bound 9*ar_0 + 2*ar_0*ar_1 + 2*ar_1 + 15 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Time: 0.088 sec (SMT: 0.077 sec) 4.65/2.16 4.65/2.16 4.65/2.16 ---------------------------------------- 4.65/2.16 4.65/2.16 (2) 4.65/2.16 BOUNDS(1, n^2) 4.65/2.16 4.65/2.16 ---------------------------------------- 4.65/2.16 4.65/2.16 (3) Loat Proof (FINISHED) 4.65/2.16 4.65/2.16 4.65/2.16 ### Pre-processing the ITS problem ### 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Initial linear ITS problem 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 0: evalfstart -> evalfentryin : [], cost: 1 4.65/2.16 4.65/2.16 1: evalfentryin -> evalfbb4in : A'=B, B'=A, [], cost: 1 4.65/2.16 4.65/2.16 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=1 ], cost: 1 4.65/2.16 4.65/2.16 3: evalfbb4in -> evalfreturnin : [ 0>=B ], cost: 1 4.65/2.16 4.65/2.16 4: evalfbb2in -> evalfbb1in : [ A>=C ], cost: 1 4.65/2.16 4.65/2.16 5: evalfbb2in -> evalfbb3in : [ C>=1+A ], cost: 1 4.65/2.16 4.65/2.16 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.65/2.16 4.65/2.16 7: evalfbb3in -> evalfbb4in : B'=-1+B, [], cost: 1 4.65/2.16 4.65/2.16 8: evalfreturnin -> evalfstop : [], cost: 1 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Removed unreachable and leaf rules: 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 0: evalfstart -> evalfentryin : [], cost: 1 4.65/2.16 4.65/2.16 1: evalfentryin -> evalfbb4in : A'=B, B'=A, [], cost: 1 4.65/2.16 4.65/2.16 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=1 ], cost: 1 4.65/2.16 4.65/2.16 4: evalfbb2in -> evalfbb1in : [ A>=C ], cost: 1 4.65/2.16 4.65/2.16 5: evalfbb2in -> evalfbb3in : [ C>=1+A ], cost: 1 4.65/2.16 4.65/2.16 6: evalfbb1in -> evalfbb2in : C'=1+C, [], cost: 1 4.65/2.16 4.65/2.16 7: evalfbb3in -> evalfbb4in : B'=-1+B, [], cost: 1 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 ### Simplification by acceleration and chaining ### 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Eliminated locations (on linear paths): 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.65/2.16 4.65/2.16 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=1 ], cost: 1 4.65/2.16 4.65/2.16 10: evalfbb2in -> evalfbb2in : C'=1+C, [ A>=C ], cost: 2 4.65/2.16 4.65/2.16 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ C>=1+A ], cost: 2 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Accelerating simple loops of location 3. 4.65/2.16 4.65/2.16 Accelerating the following rules: 4.65/2.16 4.65/2.16 10: evalfbb2in -> evalfbb2in : C'=1+C, [ A>=C ], cost: 2 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Accelerated rule 10 with metering function 1-C+A, yielding the new rule 12. 4.65/2.16 4.65/2.16 Removing the simple loops: 10. 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Accelerated all simple loops using metering functions (where possible): 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.65/2.16 4.65/2.16 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=1 ], cost: 1 4.65/2.16 4.65/2.16 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ C>=1+A ], cost: 2 4.65/2.16 4.65/2.16 12: evalfbb2in -> evalfbb2in : C'=1+A, [ A>=C ], cost: 2-2*C+2*A 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Chained accelerated rules (with incoming rules): 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.65/2.16 4.65/2.16 2: evalfbb4in -> evalfbb2in : C'=1, [ B>=1 ], cost: 1 4.65/2.16 4.65/2.16 13: evalfbb4in -> evalfbb2in : C'=1+A, [ B>=1 && A>=1 ], cost: 1+2*A 4.65/2.16 4.65/2.16 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ C>=1+A ], cost: 2 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Eliminated locations (on tree-shaped paths): 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.65/2.16 4.65/2.16 14: evalfbb4in -> evalfbb4in : B'=-1+B, C'=1, [ B>=1 && 1>=1+A ], cost: 3 4.65/2.16 4.65/2.16 15: evalfbb4in -> evalfbb4in : B'=-1+B, C'=1+A, [ B>=1 && A>=1 ], cost: 3+2*A 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Accelerating simple loops of location 2. 4.65/2.16 4.65/2.16 Accelerating the following rules: 4.65/2.16 4.65/2.16 14: evalfbb4in -> evalfbb4in : B'=-1+B, C'=1, [ B>=1 && 1>=1+A ], cost: 3 4.65/2.16 4.65/2.16 15: evalfbb4in -> evalfbb4in : B'=-1+B, C'=1+A, [ B>=1 && A>=1 ], cost: 3+2*A 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Accelerated rule 14 with metering function B, yielding the new rule 16. 4.65/2.16 4.65/2.16 Accelerated rule 15 with metering function B, yielding the new rule 17. 4.65/2.16 4.65/2.16 Removing the simple loops: 14 15. 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Accelerated all simple loops using metering functions (where possible): 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.65/2.16 4.65/2.16 16: evalfbb4in -> evalfbb4in : B'=0, C'=1, [ B>=1 && 1>=1+A ], cost: 3*B 4.65/2.16 4.65/2.16 17: evalfbb4in -> evalfbb4in : B'=0, C'=1+A, [ B>=1 && A>=1 ], cost: 2*A*B+3*B 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Chained accelerated rules (with incoming rules): 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 4.65/2.16 4.65/2.16 18: evalfstart -> evalfbb4in : A'=B, B'=0, C'=1, [ A>=1 && 1>=1+B ], cost: 2+3*A 4.65/2.16 4.65/2.16 19: evalfstart -> evalfbb4in : A'=B, B'=0, C'=1+B, [ A>=1 && B>=1 ], cost: 2+3*A+2*A*B 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Removed unreachable locations (and leaf rules with constant cost): 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 18: evalfstart -> evalfbb4in : A'=B, B'=0, C'=1, [ A>=1 && 1>=1+B ], cost: 2+3*A 4.65/2.16 4.65/2.16 19: evalfstart -> evalfbb4in : A'=B, B'=0, C'=1+B, [ A>=1 && B>=1 ], cost: 2+3*A+2*A*B 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 ### Computing asymptotic complexity ### 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Fully simplified ITS problem 4.65/2.16 4.65/2.16 Start location: evalfstart 4.65/2.16 4.65/2.16 18: evalfstart -> evalfbb4in : A'=B, B'=0, C'=1, [ A>=1 && 1>=1+B ], cost: 2+3*A 4.65/2.16 4.65/2.16 19: evalfstart -> evalfbb4in : A'=B, B'=0, C'=1+B, [ A>=1 && B>=1 ], cost: 2+3*A+2*A*B 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Computing asymptotic complexity for rule 18 4.65/2.16 4.65/2.16 Solved the limit problem by the following transformations: 4.65/2.16 4.65/2.16 Created initial limit problem: 4.65/2.16 4.65/2.16 1-B (+/+!), A (+/+!), 2+3*A (+) [not solved] 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 removing all constraints (solved by SMT) 4.65/2.16 4.65/2.16 resulting limit problem: [solved] 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 applying transformation rule (C) using substitution {A==n,B==0} 4.65/2.16 4.65/2.16 resulting limit problem: 4.65/2.16 4.65/2.16 [solved] 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Solution: 4.65/2.16 4.65/2.16 A / n 4.65/2.16 4.65/2.16 B / 0 4.65/2.16 4.65/2.16 Resulting cost 2+3*n has complexity: Poly(n^1) 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Found new complexity Poly(n^1). 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Computing asymptotic complexity for rule 19 4.65/2.16 4.65/2.16 Solved the limit problem by the following transformations: 4.65/2.16 4.65/2.16 Created initial limit problem: 4.65/2.16 4.65/2.16 A (+/+!), 2+3*A+2*A*B (+), B (+/+!) [not solved] 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 removing all constraints (solved by SMT) 4.65/2.16 4.65/2.16 resulting limit problem: [solved] 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 applying transformation rule (C) using substitution {A==n,B==n} 4.65/2.16 4.65/2.16 resulting limit problem: 4.65/2.16 4.65/2.16 [solved] 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Solution: 4.65/2.16 4.65/2.16 A / n 4.65/2.16 4.65/2.16 B / n 4.65/2.16 4.65/2.16 Resulting cost 2+3*n+2*n^2 has complexity: Poly(n^2) 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Found new complexity Poly(n^2). 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 Obtained the following overall complexity (w.r.t. the length of the input n): 4.65/2.16 4.65/2.16 Complexity: Poly(n^2) 4.65/2.16 4.65/2.16 Cpx degree: 2 4.65/2.16 4.65/2.16 Solved cost: 2+3*n+2*n^2 4.65/2.16 4.65/2.16 Rule cost: 2+3*A+2*A*B 4.65/2.16 4.65/2.16 Rule guard: [ A>=1 && B>=1 ] 4.65/2.16 4.65/2.16 4.65/2.16 4.65/2.16 WORST_CASE(Omega(n^2),?) 4.65/2.16 4.65/2.16 4.65/2.16 ---------------------------------------- 4.65/2.16 4.65/2.16 (4) 4.65/2.16 BOUNDS(n^2, INF) 4.65/2.17 EOF