3.63/2.34 WORST_CASE(Omega(n^2), O(n^2)) 3.63/2.35 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.63/2.35 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.63/2.35 3.63/2.35 3.63/2.35 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 3.63/2.35 3.63/2.35 (0) CpxIntTrs 3.63/2.35 (1) Koat Proof [FINISHED, 33 ms] 3.63/2.35 (2) BOUNDS(1, n^2) 3.63/2.35 (3) Loat Proof [FINISHED, 599 ms] 3.63/2.35 (4) BOUNDS(n^2, INF) 3.63/2.35 3.63/2.35 3.63/2.35 ---------------------------------------- 3.63/2.35 3.63/2.35 (0) 3.63/2.35 Obligation: 3.63/2.35 Complexity Int TRS consisting of the following rules: 3.63/2.35 evalfstart(A, B, C) -> Com_1(evalfentryin(A, B, C)) :|: TRUE 3.63/2.35 evalfentryin(A, B, C) -> Com_1(evalfbb4in(B, A, C)) :|: TRUE 3.63/2.35 evalfbb4in(A, B, C) -> Com_1(evalfbb2in(A, B, A)) :|: B >= 1 3.63/2.35 evalfbb4in(A, B, C) -> Com_1(evalfreturnin(A, B, C)) :|: 0 >= B 3.63/2.35 evalfbb2in(A, B, C) -> Com_1(evalfbb1in(A, B, C)) :|: C >= 1 3.63/2.35 evalfbb2in(A, B, C) -> Com_1(evalfbb3in(A, B, C)) :|: 0 >= C 3.63/2.35 evalfbb1in(A, B, C) -> Com_1(evalfbb2in(A, B, C - 1)) :|: TRUE 3.63/2.35 evalfbb3in(A, B, C) -> Com_1(evalfbb4in(A, B - 1, C)) :|: TRUE 3.63/2.35 evalfreturnin(A, B, C) -> Com_1(evalfstop(A, B, C)) :|: TRUE 3.63/2.35 3.63/2.35 The start-symbols are:[evalfstart_3] 3.63/2.35 3.63/2.35 3.63/2.35 ---------------------------------------- 3.63/2.35 3.63/2.35 (1) Koat Proof (FINISHED) 3.63/2.35 YES(?, 7*ar_0 + 2*ar_0*ar_1 + 2*ar_1 + 13) 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Initial complexity problem: 3.63/2.35 3.63/2.35 1: T: 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.63/2.35 3.63/2.35 start location: koat_start 3.63/2.35 3.63/2.35 leaf cost: 0 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.63/2.35 3.63/2.35 2: T: 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.63/2.35 3.63/2.35 start location: koat_start 3.63/2.35 3.63/2.35 leaf cost: 0 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 A polynomial rank function with 3.63/2.35 3.63/2.35 Pol(evalfstart) = 2 3.63/2.35 3.63/2.35 Pol(evalfentryin) = 2 3.63/2.35 3.63/2.35 Pol(evalfbb4in) = 2 3.63/2.35 3.63/2.35 Pol(evalfbb2in) = 2 3.63/2.35 3.63/2.35 Pol(evalfreturnin) = 1 3.63/2.35 3.63/2.35 Pol(evalfbb1in) = 2 3.63/2.35 3.63/2.35 Pol(evalfbb3in) = 2 3.63/2.35 3.63/2.35 Pol(evalfstop) = 0 3.63/2.35 3.63/2.35 Pol(koat_start) = 2 3.63/2.35 3.63/2.35 orients all transitions weakly and the transitions 3.63/2.35 3.63/2.35 evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 strictly and produces the following problem: 3.63/2.35 3.63/2.35 3: T: 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.63/2.35 3.63/2.35 start location: koat_start 3.63/2.35 3.63/2.35 leaf cost: 0 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 A polynomial rank function with 3.63/2.35 3.63/2.35 Pol(evalfstart) = V_1 + 1 3.63/2.35 3.63/2.35 Pol(evalfentryin) = V_1 + 1 3.63/2.35 3.63/2.35 Pol(evalfbb4in) = V_2 + 1 3.63/2.35 3.63/2.35 Pol(evalfbb2in) = V_2 3.63/2.35 3.63/2.35 Pol(evalfreturnin) = V_2 3.63/2.35 3.63/2.35 Pol(evalfbb1in) = V_2 3.63/2.35 3.63/2.35 Pol(evalfbb3in) = V_2 3.63/2.35 3.63/2.35 Pol(evalfstop) = V_2 3.63/2.35 3.63/2.35 Pol(koat_start) = V_1 + 1 3.63/2.35 3.63/2.35 orients all transitions weakly and the transition 3.63/2.35 3.63/2.35 evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 strictly and produces the following problem: 3.63/2.35 3.63/2.35 4: T: 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.63/2.35 3.63/2.35 start location: koat_start 3.63/2.35 3.63/2.35 leaf cost: 0 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 A polynomial rank function with 3.63/2.35 3.63/2.35 Pol(evalfbb3in) = 1 3.63/2.35 3.63/2.35 Pol(evalfbb4in) = 0 3.63/2.35 3.63/2.35 Pol(evalfbb2in) = 2 3.63/2.35 3.63/2.35 Pol(evalfbb1in) = 2 3.63/2.35 3.63/2.35 and size complexities 3.63/2.35 3.63/2.35 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 3.63/2.35 3.63/2.35 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 3.63/2.35 3.63/2.35 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 3.63/2.35 3.63/2.35 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = ? 3.63/2.35 3.63/2.35 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-1) = ? 3.63/2.35 3.63/2.35 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1))", 0-1) = ? 3.63/2.35 3.63/2.35 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1))", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-1) = ? 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-1) = ? 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-1) = ? 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ]", 0-1) = ? 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ]", 0-2) = ar_1 3.63/2.35 3.63/2.35 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-1) = ar_0 3.63/2.35 3.63/2.35 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-2) = ar_2 3.63/2.35 3.63/2.35 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 3.63/2.35 3.63/2.35 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 3.63/2.35 3.63/2.35 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 3.63/2.35 3.63/2.35 orients the transitions 3.63/2.35 3.63/2.35 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 weakly and the transitions 3.63/2.35 3.63/2.35 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 strictly and produces the following problem: 3.63/2.35 3.63/2.35 5: T: 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.63/2.35 3.63/2.35 start location: koat_start 3.63/2.35 3.63/2.35 leaf cost: 0 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 A polynomial rank function with 3.63/2.35 3.63/2.35 Pol(evalfbb2in) = V_3 + 1 3.63/2.35 3.63/2.35 Pol(evalfbb1in) = V_3 3.63/2.35 3.63/2.35 and size complexities 3.63/2.35 3.63/2.35 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 3.63/2.35 3.63/2.35 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 3.63/2.35 3.63/2.35 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 3.63/2.35 3.63/2.35 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-1) = 3*ar_0 + 162 3.63/2.35 3.63/2.35 S("evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2))", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-1) = 3*ar_0 + 18 3.63/2.35 3.63/2.35 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2))", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1))", 0-1) = 3*ar_0 + 18 3.63/2.35 3.63/2.35 S("evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1))", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-1) = 3*ar_0 + 18 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-1) = 3*ar_0 + 18 3.63/2.35 3.63/2.35 S("evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-1) = 3*ar_0 + 54 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-2) = ? 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ]", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ]", 0-1) = 3*ar_0 + 18 3.63/2.35 3.63/2.35 S("evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ]", 0-2) = ar_1 3.63/2.35 3.63/2.35 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-0) = ar_1 3.63/2.35 3.63/2.35 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-1) = ar_0 3.63/2.35 3.63/2.35 S("evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2))", 0-2) = ar_2 3.63/2.35 3.63/2.35 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 3.63/2.35 3.63/2.35 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 3.63/2.35 3.63/2.35 S("evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 3.63/2.35 3.63/2.35 orients the transitions 3.63/2.35 3.63/2.35 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 weakly and the transition 3.63/2.35 3.63/2.35 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 strictly and produces the following problem: 3.63/2.35 3.63/2.35 6: T: 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 (Comp: ar_0*ar_1 + ar_1 + ar_0 + 1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.63/2.35 3.63/2.35 start location: koat_start 3.63/2.35 3.63/2.35 leaf cost: 0 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Repeatedly propagating knowledge in problem 6 produces the following problem: 3.63/2.35 3.63/2.35 7: T: 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_1, ar_0, ar_2)) 3.63/2.35 3.63/2.35 (Comp: ar_0 + 1, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_0)) [ ar_1 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfbb4in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] 3.63/2.35 3.63/2.35 (Comp: ar_0*ar_1 + ar_1 + ar_0 + 1, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.63/2.35 3.63/2.35 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 3.63/2.35 3.63/2.35 (Comp: ar_0*ar_1 + ar_1 + ar_0 + 1, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2 - 1)) 3.63/2.35 3.63/2.35 (Comp: 2*ar_0 + 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb4in(ar_0, ar_1 - 1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 3.63/2.35 3.63/2.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.63/2.35 3.63/2.35 start location: koat_start 3.63/2.35 3.63/2.35 leaf cost: 0 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Complexity upper bound 7*ar_0 + 2*ar_0*ar_1 + 2*ar_1 + 13 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Time: 0.090 sec (SMT: 0.080 sec) 3.63/2.35 3.63/2.35 3.63/2.35 ---------------------------------------- 3.63/2.35 3.63/2.35 (2) 3.63/2.35 BOUNDS(1, n^2) 3.63/2.35 3.63/2.35 ---------------------------------------- 3.63/2.35 3.63/2.35 (3) Loat Proof (FINISHED) 3.63/2.35 3.63/2.35 3.63/2.35 ### Pre-processing the ITS problem ### 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Initial linear ITS problem 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 0: evalfstart -> evalfentryin : [], cost: 1 3.63/2.35 3.63/2.35 1: evalfentryin -> evalfbb4in : A'=B, B'=A, [], cost: 1 3.63/2.35 3.63/2.35 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 3.63/2.35 3.63/2.35 3: evalfbb4in -> evalfreturnin : [ 0>=B ], cost: 1 3.63/2.35 3.63/2.35 4: evalfbb2in -> evalfbb1in : [ C>=1 ], cost: 1 3.63/2.35 3.63/2.35 5: evalfbb2in -> evalfbb3in : [ 0>=C ], cost: 1 3.63/2.35 3.63/2.35 6: evalfbb1in -> evalfbb2in : C'=-1+C, [], cost: 1 3.63/2.35 3.63/2.35 7: evalfbb3in -> evalfbb4in : B'=-1+B, [], cost: 1 3.63/2.35 3.63/2.35 8: evalfreturnin -> evalfstop : [], cost: 1 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Removed unreachable and leaf rules: 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 0: evalfstart -> evalfentryin : [], cost: 1 3.63/2.35 3.63/2.35 1: evalfentryin -> evalfbb4in : A'=B, B'=A, [], cost: 1 3.63/2.35 3.63/2.35 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 3.63/2.35 3.63/2.35 4: evalfbb2in -> evalfbb1in : [ C>=1 ], cost: 1 3.63/2.35 3.63/2.35 5: evalfbb2in -> evalfbb3in : [ 0>=C ], cost: 1 3.63/2.35 3.63/2.35 6: evalfbb1in -> evalfbb2in : C'=-1+C, [], cost: 1 3.63/2.35 3.63/2.35 7: evalfbb3in -> evalfbb4in : B'=-1+B, [], cost: 1 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 ### Simplification by acceleration and chaining ### 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Eliminated locations (on linear paths): 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 3.63/2.35 3.63/2.35 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 3.63/2.35 3.63/2.35 10: evalfbb2in -> evalfbb2in : C'=-1+C, [ C>=1 ], cost: 2 3.63/2.35 3.63/2.35 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ 0>=C ], cost: 2 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Accelerating simple loops of location 3. 3.63/2.35 3.63/2.35 Accelerating the following rules: 3.63/2.35 3.63/2.35 10: evalfbb2in -> evalfbb2in : C'=-1+C, [ C>=1 ], cost: 2 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Accelerated rule 10 with metering function C, yielding the new rule 12. 3.63/2.35 3.63/2.35 Removing the simple loops: 10. 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Accelerated all simple loops using metering functions (where possible): 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 3.63/2.35 3.63/2.35 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 3.63/2.35 3.63/2.35 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ 0>=C ], cost: 2 3.63/2.35 3.63/2.35 12: evalfbb2in -> evalfbb2in : C'=0, [ C>=1 ], cost: 2*C 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Chained accelerated rules (with incoming rules): 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 3.63/2.35 3.63/2.35 2: evalfbb4in -> evalfbb2in : C'=A, [ B>=1 ], cost: 1 3.63/2.35 3.63/2.35 13: evalfbb4in -> evalfbb2in : C'=0, [ B>=1 && A>=1 ], cost: 1+2*A 3.63/2.35 3.63/2.35 11: evalfbb2in -> evalfbb4in : B'=-1+B, [ 0>=C ], cost: 2 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Eliminated locations (on tree-shaped paths): 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 3.63/2.35 3.63/2.35 14: evalfbb4in -> evalfbb4in : B'=-1+B, C'=A, [ B>=1 && 0>=A ], cost: 3 3.63/2.35 3.63/2.35 15: evalfbb4in -> evalfbb4in : B'=-1+B, C'=0, [ B>=1 && A>=1 ], cost: 3+2*A 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Accelerating simple loops of location 2. 3.63/2.35 3.63/2.35 Accelerating the following rules: 3.63/2.35 3.63/2.35 14: evalfbb4in -> evalfbb4in : B'=-1+B, C'=A, [ B>=1 && 0>=A ], cost: 3 3.63/2.35 3.63/2.35 15: evalfbb4in -> evalfbb4in : B'=-1+B, C'=0, [ B>=1 && A>=1 ], cost: 3+2*A 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Accelerated rule 14 with metering function B, yielding the new rule 16. 3.63/2.35 3.63/2.35 Accelerated rule 15 with metering function B, yielding the new rule 17. 3.63/2.35 3.63/2.35 Removing the simple loops: 14 15. 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Accelerated all simple loops using metering functions (where possible): 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 3.63/2.35 3.63/2.35 16: evalfbb4in -> evalfbb4in : B'=0, C'=A, [ B>=1 && 0>=A ], cost: 3*B 3.63/2.35 3.63/2.35 17: evalfbb4in -> evalfbb4in : B'=0, C'=0, [ B>=1 && A>=1 ], cost: 2*A*B+3*B 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Chained accelerated rules (with incoming rules): 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 9: evalfstart -> evalfbb4in : A'=B, B'=A, [], cost: 2 3.63/2.35 3.63/2.35 18: evalfstart -> evalfbb4in : A'=B, B'=0, C'=B, [ A>=1 && 0>=B ], cost: 2+3*A 3.63/2.35 3.63/2.35 19: evalfstart -> evalfbb4in : A'=B, B'=0, C'=0, [ A>=1 && B>=1 ], cost: 2+3*A+2*A*B 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Removed unreachable locations (and leaf rules with constant cost): 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 18: evalfstart -> evalfbb4in : A'=B, B'=0, C'=B, [ A>=1 && 0>=B ], cost: 2+3*A 3.63/2.35 3.63/2.35 19: evalfstart -> evalfbb4in : A'=B, B'=0, C'=0, [ A>=1 && B>=1 ], cost: 2+3*A+2*A*B 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 ### Computing asymptotic complexity ### 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Fully simplified ITS problem 3.63/2.35 3.63/2.35 Start location: evalfstart 3.63/2.35 3.63/2.35 18: evalfstart -> evalfbb4in : A'=B, B'=0, C'=B, [ A>=1 && 0>=B ], cost: 2+3*A 3.63/2.35 3.63/2.35 19: evalfstart -> evalfbb4in : A'=B, B'=0, C'=0, [ A>=1 && B>=1 ], cost: 2+3*A+2*A*B 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Computing asymptotic complexity for rule 18 3.63/2.35 3.63/2.35 Solved the limit problem by the following transformations: 3.63/2.35 3.63/2.35 Created initial limit problem: 3.63/2.35 3.63/2.35 1-B (+/+!), A (+/+!), 2+3*A (+) [not solved] 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 removing all constraints (solved by SMT) 3.63/2.35 3.63/2.35 resulting limit problem: [solved] 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 applying transformation rule (C) using substitution {A==n,B==0} 3.63/2.35 3.63/2.35 resulting limit problem: 3.63/2.35 3.63/2.35 [solved] 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Solution: 3.63/2.35 3.63/2.35 A / n 3.63/2.35 3.63/2.35 B / 0 3.63/2.35 3.63/2.35 Resulting cost 2+3*n has complexity: Poly(n^1) 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Found new complexity Poly(n^1). 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Computing asymptotic complexity for rule 19 3.63/2.35 3.63/2.35 Solved the limit problem by the following transformations: 3.63/2.35 3.63/2.35 Created initial limit problem: 3.63/2.35 3.63/2.35 A (+/+!), 2+3*A+2*A*B (+), B (+/+!) [not solved] 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 removing all constraints (solved by SMT) 3.63/2.35 3.63/2.35 resulting limit problem: [solved] 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 applying transformation rule (C) using substitution {A==n,B==n} 3.63/2.35 3.63/2.35 resulting limit problem: 3.63/2.35 3.63/2.35 [solved] 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Solution: 3.63/2.35 3.63/2.35 A / n 3.63/2.35 3.63/2.35 B / n 3.63/2.35 3.63/2.35 Resulting cost 2+3*n+2*n^2 has complexity: Poly(n^2) 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Found new complexity Poly(n^2). 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 Obtained the following overall complexity (w.r.t. the length of the input n): 3.63/2.35 3.63/2.35 Complexity: Poly(n^2) 3.63/2.35 3.63/2.35 Cpx degree: 2 3.63/2.35 3.63/2.35 Solved cost: 2+3*n+2*n^2 3.63/2.35 3.63/2.35 Rule cost: 2+3*A+2*A*B 3.63/2.35 3.63/2.35 Rule guard: [ A>=1 && B>=1 ] 3.63/2.35 3.63/2.35 3.63/2.35 3.63/2.35 WORST_CASE(Omega(n^2),?) 3.63/2.35 3.63/2.35 3.63/2.35 ---------------------------------------- 3.63/2.35 3.63/2.35 (4) 3.63/2.35 BOUNDS(n^2, INF) 4.90/3.43 EOF