3.51/1.84 WORST_CASE(Omega(n^1), O(n^1)) 3.51/1.85 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.51/1.85 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.51/1.85 3.51/1.85 3.51/1.85 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 3.51/1.85 3.51/1.85 (0) CpxIntTrs 3.51/1.85 (1) Koat Proof [FINISHED, 6 ms] 3.51/1.85 (2) BOUNDS(1, n^1) 3.51/1.85 (3) Loat Proof [FINISHED, 222 ms] 3.51/1.85 (4) BOUNDS(n^1, INF) 3.51/1.85 3.51/1.85 3.51/1.85 ---------------------------------------- 3.51/1.85 3.51/1.85 (0) 3.51/1.85 Obligation: 3.51/1.85 Complexity Int TRS consisting of the following rules: 3.51/1.85 evalfstart(A, B) -> Com_1(evalfentryin(A, B)) :|: TRUE 3.51/1.85 evalfentryin(A, B) -> Com_1(evalfbb1in(B, A)) :|: TRUE 3.51/1.85 evalfbb1in(A, B) -> Com_1(evalfbbin(A, B)) :|: A >= B 3.51/1.85 evalfbb1in(A, B) -> Com_1(evalfreturnin(A, B)) :|: B >= A + 1 3.51/1.85 evalfbbin(A, B) -> Com_1(evalfbb1in(A, B + 1)) :|: TRUE 3.51/1.85 evalfreturnin(A, B) -> Com_1(evalfstop(A, B)) :|: TRUE 3.51/1.85 3.51/1.85 The start-symbols are:[evalfstart_2] 3.51/1.85 3.51/1.85 3.51/1.85 ---------------------------------------- 3.51/1.85 3.51/1.85 (1) Koat Proof (FINISHED) 3.51/1.85 YES(?, 2*ar_0 + 2*ar_1 + 8) 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Initial complexity problem: 3.51/1.85 3.51/1.85 1: T: 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1) -> Com_1(evalfentryin(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_1, ar_0)) 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfbbin(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfreturnin(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_0, ar_1 + 1)) 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1) -> Com_1(evalfstop(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfstart(ar_0, ar_1)) [ 0 <= 0 ] 3.51/1.85 3.51/1.85 start location: koat_start 3.51/1.85 3.51/1.85 leaf cost: 0 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.51/1.85 3.51/1.85 2: T: 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1) -> Com_1(evalfentryin(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_1, ar_0)) 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfbbin(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfreturnin(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_0, ar_1 + 1)) 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1) -> Com_1(evalfstop(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfstart(ar_0, ar_1)) [ 0 <= 0 ] 3.51/1.85 3.51/1.85 start location: koat_start 3.51/1.85 3.51/1.85 leaf cost: 0 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 A polynomial rank function with 3.51/1.85 3.51/1.85 Pol(evalfstart) = 2 3.51/1.85 3.51/1.85 Pol(evalfentryin) = 2 3.51/1.85 3.51/1.85 Pol(evalfbb1in) = 2 3.51/1.85 3.51/1.85 Pol(evalfbbin) = 2 3.51/1.85 3.51/1.85 Pol(evalfreturnin) = 1 3.51/1.85 3.51/1.85 Pol(evalfstop) = 0 3.51/1.85 3.51/1.85 Pol(koat_start) = 2 3.51/1.85 3.51/1.85 orients all transitions weakly and the transitions 3.51/1.85 3.51/1.85 evalfreturnin(ar_0, ar_1) -> Com_1(evalfstop(ar_0, ar_1)) 3.51/1.85 3.51/1.85 evalfbb1in(ar_0, ar_1) -> Com_1(evalfreturnin(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.51/1.85 3.51/1.85 strictly and produces the following problem: 3.51/1.85 3.51/1.85 3: T: 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1) -> Com_1(evalfentryin(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_1, ar_0)) 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfbbin(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.51/1.85 3.51/1.85 (Comp: 2, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfreturnin(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_0, ar_1 + 1)) 3.51/1.85 3.51/1.85 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1) -> Com_1(evalfstop(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfstart(ar_0, ar_1)) [ 0 <= 0 ] 3.51/1.85 3.51/1.85 start location: koat_start 3.51/1.85 3.51/1.85 leaf cost: 0 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 A polynomial rank function with 3.51/1.85 3.51/1.85 Pol(evalfstart) = -V_1 + V_2 + 1 3.51/1.85 3.51/1.85 Pol(evalfentryin) = -V_1 + V_2 + 1 3.51/1.85 3.51/1.85 Pol(evalfbb1in) = V_1 - V_2 + 1 3.51/1.85 3.51/1.85 Pol(evalfbbin) = V_1 - V_2 3.51/1.85 3.51/1.85 Pol(evalfreturnin) = V_1 - V_2 3.51/1.85 3.51/1.85 Pol(evalfstop) = V_1 - V_2 3.51/1.85 3.51/1.85 Pol(koat_start) = -V_1 + V_2 + 1 3.51/1.85 3.51/1.85 orients all transitions weakly and the transition 3.51/1.85 3.51/1.85 evalfbb1in(ar_0, ar_1) -> Com_1(evalfbbin(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.51/1.85 3.51/1.85 strictly and produces the following problem: 3.51/1.85 3.51/1.85 4: T: 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1) -> Com_1(evalfentryin(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_1, ar_0)) 3.51/1.85 3.51/1.85 (Comp: ar_0 + ar_1 + 1, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfbbin(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.51/1.85 3.51/1.85 (Comp: 2, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfreturnin(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.51/1.85 3.51/1.85 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_0, ar_1 + 1)) 3.51/1.85 3.51/1.85 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1) -> Com_1(evalfstop(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfstart(ar_0, ar_1)) [ 0 <= 0 ] 3.51/1.85 3.51/1.85 start location: koat_start 3.51/1.85 3.51/1.85 leaf cost: 0 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Repeatedly propagating knowledge in problem 4 produces the following problem: 3.51/1.85 3.51/1.85 5: T: 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1) -> Com_1(evalfentryin(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_1, ar_0)) 3.51/1.85 3.51/1.85 (Comp: ar_0 + ar_1 + 1, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfbbin(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.51/1.85 3.51/1.85 (Comp: 2, Cost: 1) evalfbb1in(ar_0, ar_1) -> Com_1(evalfreturnin(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.51/1.85 3.51/1.85 (Comp: ar_0 + ar_1 + 1, Cost: 1) evalfbbin(ar_0, ar_1) -> Com_1(evalfbb1in(ar_0, ar_1 + 1)) 3.51/1.85 3.51/1.85 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1) -> Com_1(evalfstop(ar_0, ar_1)) 3.51/1.85 3.51/1.85 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfstart(ar_0, ar_1)) [ 0 <= 0 ] 3.51/1.85 3.51/1.85 start location: koat_start 3.51/1.85 3.51/1.85 leaf cost: 0 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Complexity upper bound 2*ar_0 + 2*ar_1 + 8 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Time: 0.055 sec (SMT: 0.052 sec) 3.51/1.85 3.51/1.85 3.51/1.85 ---------------------------------------- 3.51/1.85 3.51/1.85 (2) 3.51/1.85 BOUNDS(1, n^1) 3.51/1.85 3.51/1.85 ---------------------------------------- 3.51/1.85 3.51/1.85 (3) Loat Proof (FINISHED) 3.51/1.85 3.51/1.85 3.51/1.85 ### Pre-processing the ITS problem ### 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Initial linear ITS problem 3.51/1.85 3.51/1.85 Start location: evalfstart 3.51/1.85 3.51/1.85 0: evalfstart -> evalfentryin : [], cost: 1 3.51/1.85 3.51/1.85 1: evalfentryin -> evalfbb1in : A'=B, B'=A, [], cost: 1 3.51/1.85 3.51/1.85 2: evalfbb1in -> evalfbbin : [ A>=B ], cost: 1 3.51/1.85 3.51/1.85 3: evalfbb1in -> evalfreturnin : [ B>=1+A ], cost: 1 3.51/1.85 3.51/1.85 4: evalfbbin -> evalfbb1in : B'=1+B, [], cost: 1 3.51/1.85 3.51/1.85 5: evalfreturnin -> evalfstop : [], cost: 1 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Removed unreachable and leaf rules: 3.51/1.85 3.51/1.85 Start location: evalfstart 3.51/1.85 3.51/1.85 0: evalfstart -> evalfentryin : [], cost: 1 3.51/1.85 3.51/1.85 1: evalfentryin -> evalfbb1in : A'=B, B'=A, [], cost: 1 3.51/1.85 3.51/1.85 2: evalfbb1in -> evalfbbin : [ A>=B ], cost: 1 3.51/1.85 3.51/1.85 4: evalfbbin -> evalfbb1in : B'=1+B, [], cost: 1 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 ### Simplification by acceleration and chaining ### 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Eliminated locations (on linear paths): 3.51/1.85 3.51/1.85 Start location: evalfstart 3.51/1.85 3.51/1.85 6: evalfstart -> evalfbb1in : A'=B, B'=A, [], cost: 2 3.51/1.85 3.51/1.85 7: evalfbb1in -> evalfbb1in : B'=1+B, [ A>=B ], cost: 2 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Accelerating simple loops of location 2. 3.51/1.85 3.51/1.85 Accelerating the following rules: 3.51/1.85 3.51/1.85 7: evalfbb1in -> evalfbb1in : B'=1+B, [ A>=B ], cost: 2 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Accelerated rule 7 with metering function 1+A-B, yielding the new rule 8. 3.51/1.85 3.51/1.85 Removing the simple loops: 7. 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Accelerated all simple loops using metering functions (where possible): 3.51/1.85 3.51/1.85 Start location: evalfstart 3.51/1.85 3.51/1.85 6: evalfstart -> evalfbb1in : A'=B, B'=A, [], cost: 2 3.51/1.85 3.51/1.85 8: evalfbb1in -> evalfbb1in : B'=1+A, [ A>=B ], cost: 2+2*A-2*B 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Chained accelerated rules (with incoming rules): 3.51/1.85 3.51/1.85 Start location: evalfstart 3.51/1.85 3.51/1.85 6: evalfstart -> evalfbb1in : A'=B, B'=A, [], cost: 2 3.51/1.85 3.51/1.85 9: evalfstart -> evalfbb1in : A'=B, B'=1+B, [ B>=A ], cost: 4-2*A+2*B 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Removed unreachable locations (and leaf rules with constant cost): 3.51/1.85 3.51/1.85 Start location: evalfstart 3.51/1.85 3.51/1.85 9: evalfstart -> evalfbb1in : A'=B, B'=1+B, [ B>=A ], cost: 4-2*A+2*B 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 ### Computing asymptotic complexity ### 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Fully simplified ITS problem 3.51/1.85 3.51/1.85 Start location: evalfstart 3.51/1.85 3.51/1.85 9: evalfstart -> evalfbb1in : A'=B, B'=1+B, [ B>=A ], cost: 4-2*A+2*B 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Computing asymptotic complexity for rule 9 3.51/1.85 3.51/1.85 Solved the limit problem by the following transformations: 3.51/1.85 3.51/1.85 Created initial limit problem: 3.51/1.85 3.51/1.85 4-2*A+2*B (+), 1-A+B (+/+!) [not solved] 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 removing all constraints (solved by SMT) 3.51/1.85 3.51/1.85 resulting limit problem: [solved] 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 applying transformation rule (C) using substitution {A==0,B==n} 3.51/1.85 3.51/1.85 resulting limit problem: 3.51/1.85 3.51/1.85 [solved] 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Solution: 3.51/1.85 3.51/1.85 A / 0 3.51/1.85 3.51/1.85 B / n 3.51/1.85 3.51/1.85 Resulting cost 4+2*n has complexity: Poly(n^1) 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Found new complexity Poly(n^1). 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 Obtained the following overall complexity (w.r.t. the length of the input n): 3.51/1.85 3.51/1.85 Complexity: Poly(n^1) 3.51/1.85 3.51/1.85 Cpx degree: 1 3.51/1.85 3.51/1.85 Solved cost: 4+2*n 3.51/1.85 3.51/1.85 Rule cost: 4-2*A+2*B 3.51/1.85 3.51/1.85 Rule guard: [ B>=A ] 3.51/1.85 3.51/1.85 3.51/1.85 3.51/1.85 WORST_CASE(Omega(n^1),?) 3.51/1.85 3.51/1.85 3.51/1.85 ---------------------------------------- 3.51/1.85 3.51/1.85 (4) 3.51/1.85 BOUNDS(n^1, INF) 4.04/1.88 EOF