4.91/2.38 WORST_CASE(Omega(n^1), O(n^1)) 5.11/2.39 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 5.11/2.39 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.11/2.39 5.11/2.39 5.11/2.39 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 5.11/2.39 5.11/2.39 (0) CpxIntTrs 5.11/2.39 (1) Koat Proof [FINISHED, 189 ms] 5.11/2.39 (2) BOUNDS(1, n^1) 5.11/2.39 (3) Loat Proof [FINISHED, 708 ms] 5.11/2.39 (4) BOUNDS(n^1, INF) 5.11/2.39 5.11/2.39 5.11/2.39 ---------------------------------------- 5.11/2.39 5.11/2.39 (0) 5.11/2.39 Obligation: 5.11/2.39 Complexity Int TRS consisting of the following rules: 5.11/2.39 evalEx6start(A, B, C) -> Com_1(evalEx6entryin(A, B, C)) :|: TRUE 5.11/2.39 evalEx6entryin(A, B, C) -> Com_1(evalEx6bb3in(B, A, C)) :|: TRUE 5.11/2.39 evalEx6bb3in(A, B, C) -> Com_1(evalEx6bbin(A, B, C)) :|: C >= B + 1 5.11/2.39 evalEx6bb3in(A, B, C) -> Com_1(evalEx6returnin(A, B, C)) :|: B >= C 5.11/2.39 evalEx6bbin(A, B, C) -> Com_1(evalEx6bb1in(A, B, C)) :|: A >= B + 1 5.11/2.39 evalEx6bbin(A, B, C) -> Com_1(evalEx6bb2in(A, B, C)) :|: B >= A 5.11/2.39 evalEx6bb1in(A, B, C) -> Com_1(evalEx6bb3in(A, B + 1, C)) :|: TRUE 5.11/2.39 evalEx6bb2in(A, B, C) -> Com_1(evalEx6bb3in(A + 1, B, C)) :|: TRUE 5.11/2.39 evalEx6returnin(A, B, C) -> Com_1(evalEx6stop(A, B, C)) :|: TRUE 5.11/2.39 5.11/2.39 The start-symbols are:[evalEx6start_3] 5.11/2.39 5.11/2.39 5.11/2.39 ---------------------------------------- 5.11/2.39 5.11/2.39 (1) Koat Proof (FINISHED) 5.11/2.39 YES(?, 6*ar_1 + 12*ar_2 + 6*ar_0 + 7) 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Initial complexity problem: 5.11/2.39 5.11/2.39 1: T: 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6start(ar_0, ar_1, ar_2) -> Com_1(evalEx6entryin(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6entryin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_1, ar_0, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bbin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalEx6start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.11/2.39 5.11/2.39 start location: koat_start 5.11/2.39 5.11/2.39 leaf cost: 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Repeatedly propagating knowledge in problem 1 produces the following problem: 5.11/2.39 5.11/2.39 2: T: 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6start(ar_0, ar_1, ar_2) -> Com_1(evalEx6entryin(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6entryin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_1, ar_0, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bbin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalEx6start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.11/2.39 5.11/2.39 start location: koat_start 5.11/2.39 5.11/2.39 leaf cost: 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 A polynomial rank function with 5.11/2.39 5.11/2.39 Pol(evalEx6start) = 2 5.11/2.39 5.11/2.39 Pol(evalEx6entryin) = 2 5.11/2.39 5.11/2.39 Pol(evalEx6bb3in) = 2 5.11/2.39 5.11/2.39 Pol(evalEx6bbin) = 2 5.11/2.39 5.11/2.39 Pol(evalEx6returnin) = 1 5.11/2.39 5.11/2.39 Pol(evalEx6bb1in) = 2 5.11/2.39 5.11/2.39 Pol(evalEx6bb2in) = 2 5.11/2.39 5.11/2.39 Pol(evalEx6stop) = 0 5.11/2.39 5.11/2.39 Pol(koat_start) = 2 5.11/2.39 5.11/2.39 orients all transitions weakly and the transitions 5.11/2.39 5.11/2.39 evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 strictly and produces the following problem: 5.11/2.39 5.11/2.39 3: T: 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6start(ar_0, ar_1, ar_2) -> Com_1(evalEx6entryin(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6entryin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_1, ar_0, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bbin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalEx6start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.11/2.39 5.11/2.39 start location: koat_start 5.11/2.39 5.11/2.39 leaf cost: 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Applied AI with 'oct' on problem 3 to obtain the following invariants: 5.11/2.39 5.11/2.39 For symbol evalEx6bb1in: -X_2 + X_3 - 1 >= 0 /\ X_1 - X_2 - 1 >= 0 5.11/2.39 5.11/2.39 For symbol evalEx6bb2in: -X_2 + X_3 - 1 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ -X_1 + X_2 >= 0 5.11/2.39 5.11/2.39 For symbol evalEx6bbin: -X_2 + X_3 - 1 >= 0 5.11/2.39 5.11/2.39 For symbol evalEx6returnin: X_2 - X_3 >= 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 This yielded the following problem: 5.11/2.39 5.11/2.39 4: T: 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalEx6start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bbin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6entryin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_1, ar_0, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6start(ar_0, ar_1, ar_2) -> Com_1(evalEx6entryin(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 start location: koat_start 5.11/2.39 5.11/2.39 leaf cost: 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 A polynomial rank function with 5.11/2.39 5.11/2.39 Pol(koat_start) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6start) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6returnin) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6stop) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6bb2in) = -2*V_1 + 2*V_3 - 1 5.11/2.39 5.11/2.39 Pol(evalEx6bb3in) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6bb1in) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6bbin) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6entryin) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 orients all transitions weakly and the transitions 5.11/2.39 5.11/2.39 evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 >= 0 ] 5.11/2.39 5.11/2.39 strictly and produces the following problem: 5.11/2.39 5.11/2.39 5: T: 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalEx6start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bbin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6entryin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_1, ar_0, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6start(ar_0, ar_1, ar_2) -> Com_1(evalEx6entryin(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 start location: koat_start 5.11/2.39 5.11/2.39 leaf cost: 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 A polynomial rank function with 5.11/2.39 5.11/2.39 Pol(koat_start) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6start) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6returnin) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6stop) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6bb2in) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6bb3in) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6bb1in) = -2*V_2 + 2*V_3 - 1 5.11/2.39 5.11/2.39 Pol(evalEx6bbin) = -2*V_2 + 2*V_3 5.11/2.39 5.11/2.39 Pol(evalEx6entryin) = -2*V_1 + 2*V_3 5.11/2.39 5.11/2.39 orients all transitions weakly and the transitions 5.11/2.39 5.11/2.39 evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.11/2.39 5.11/2.39 strictly and produces the following problem: 5.11/2.39 5.11/2.39 6: T: 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalEx6start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_0 + 2*ar_2, Cost: 1) evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_0 + 2*ar_2, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 (Comp: ?, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bbin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6entryin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_1, ar_0, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6start(ar_0, ar_1, ar_2) -> Com_1(evalEx6entryin(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 start location: koat_start 5.11/2.39 5.11/2.39 leaf cost: 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Repeatedly propagating knowledge in problem 6 produces the following problem: 5.11/2.39 5.11/2.39 7: T: 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalEx6start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6returnin(ar_0, ar_1, ar_2) -> Com_1(evalEx6stop(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalEx6bb2in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0 + 1, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_0 + 2*ar_2, Cost: 1) evalEx6bb1in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_0, ar_1 + 1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb2in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_1 >= ar_0 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_0 + 2*ar_2, Cost: 1) evalEx6bbin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb1in(ar_0, ar_1, ar_2)) [ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 2, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6returnin(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 ] 5.11/2.39 5.11/2.39 (Comp: 2*ar_0 + 4*ar_2 + 2*ar_1 + 1, Cost: 1) evalEx6bb3in(ar_0, ar_1, ar_2) -> Com_1(evalEx6bbin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 1 ] 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6entryin(ar_0, ar_1, ar_2) -> Com_1(evalEx6bb3in(ar_1, ar_0, ar_2)) 5.11/2.39 5.11/2.39 (Comp: 1, Cost: 1) evalEx6start(ar_0, ar_1, ar_2) -> Com_1(evalEx6entryin(ar_0, ar_1, ar_2)) 5.11/2.39 5.11/2.39 start location: koat_start 5.11/2.39 5.11/2.39 leaf cost: 0 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Complexity upper bound 6*ar_1 + 12*ar_2 + 6*ar_0 + 7 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Time: 0.192 sec (SMT: 0.172 sec) 5.11/2.39 5.11/2.39 5.11/2.39 ---------------------------------------- 5.11/2.39 5.11/2.39 (2) 5.11/2.39 BOUNDS(1, n^1) 5.11/2.39 5.11/2.39 ---------------------------------------- 5.11/2.39 5.11/2.39 (3) Loat Proof (FINISHED) 5.11/2.39 5.11/2.39 5.11/2.39 ### Pre-processing the ITS problem ### 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Initial linear ITS problem 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 0: evalEx6start -> evalEx6entryin : [], cost: 1 5.11/2.39 5.11/2.39 1: evalEx6entryin -> evalEx6bb3in : A'=B, B'=A, [], cost: 1 5.11/2.39 5.11/2.39 2: evalEx6bb3in -> evalEx6bbin : [ C>=1+B ], cost: 1 5.11/2.39 5.11/2.39 3: evalEx6bb3in -> evalEx6returnin : [ B>=C ], cost: 1 5.11/2.39 5.11/2.39 4: evalEx6bbin -> evalEx6bb1in : [ A>=1+B ], cost: 1 5.11/2.39 5.11/2.39 5: evalEx6bbin -> evalEx6bb2in : [ B>=A ], cost: 1 5.11/2.39 5.11/2.39 6: evalEx6bb1in -> evalEx6bb3in : B'=1+B, [], cost: 1 5.11/2.39 5.11/2.39 7: evalEx6bb2in -> evalEx6bb3in : A'=1+A, [], cost: 1 5.11/2.39 5.11/2.39 8: evalEx6returnin -> evalEx6stop : [], cost: 1 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Removed unreachable and leaf rules: 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 0: evalEx6start -> evalEx6entryin : [], cost: 1 5.11/2.39 5.11/2.39 1: evalEx6entryin -> evalEx6bb3in : A'=B, B'=A, [], cost: 1 5.11/2.39 5.11/2.39 2: evalEx6bb3in -> evalEx6bbin : [ C>=1+B ], cost: 1 5.11/2.39 5.11/2.39 4: evalEx6bbin -> evalEx6bb1in : [ A>=1+B ], cost: 1 5.11/2.39 5.11/2.39 5: evalEx6bbin -> evalEx6bb2in : [ B>=A ], cost: 1 5.11/2.39 5.11/2.39 6: evalEx6bb1in -> evalEx6bb3in : B'=1+B, [], cost: 1 5.11/2.39 5.11/2.39 7: evalEx6bb2in -> evalEx6bb3in : A'=1+A, [], cost: 1 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 ### Simplification by acceleration and chaining ### 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Eliminated locations (on linear paths): 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 9: evalEx6start -> evalEx6bb3in : A'=B, B'=A, [], cost: 2 5.11/2.39 5.11/2.39 2: evalEx6bb3in -> evalEx6bbin : [ C>=1+B ], cost: 1 5.11/2.39 5.11/2.39 10: evalEx6bbin -> evalEx6bb3in : B'=1+B, [ A>=1+B ], cost: 2 5.11/2.39 5.11/2.39 11: evalEx6bbin -> evalEx6bb3in : A'=1+A, [ B>=A ], cost: 2 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Eliminated locations (on tree-shaped paths): 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 9: evalEx6start -> evalEx6bb3in : A'=B, B'=A, [], cost: 2 5.11/2.39 5.11/2.39 12: evalEx6bb3in -> evalEx6bb3in : B'=1+B, [ C>=1+B && A>=1+B ], cost: 3 5.11/2.39 5.11/2.39 13: evalEx6bb3in -> evalEx6bb3in : A'=1+A, [ C>=1+B && B>=A ], cost: 3 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Accelerating simple loops of location 2. 5.11/2.39 5.11/2.39 Accelerating the following rules: 5.11/2.39 5.11/2.39 12: evalEx6bb3in -> evalEx6bb3in : B'=1+B, [ C>=1+B && A>=1+B ], cost: 3 5.11/2.39 5.11/2.39 13: evalEx6bb3in -> evalEx6bb3in : A'=1+A, [ C>=1+B && B>=A ], cost: 3 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Accelerated rule 12 with backward acceleration, yielding the new rule 14. 5.11/2.39 5.11/2.39 Accelerated rule 12 with backward acceleration, yielding the new rule 15. 5.11/2.39 5.11/2.39 Accelerated rule 13 with metering function 1-A+B, yielding the new rule 16. 5.11/2.39 5.11/2.39 Removing the simple loops: 12 13. 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Accelerated all simple loops using metering functions (where possible): 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 9: evalEx6start -> evalEx6bb3in : A'=B, B'=A, [], cost: 2 5.11/2.39 5.11/2.39 14: evalEx6bb3in -> evalEx6bb3in : B'=C, [ C>=1+B && A>=1+B && A>=C ], cost: 3*C-3*B 5.11/2.39 5.11/2.39 15: evalEx6bb3in -> evalEx6bb3in : B'=A, [ C>=1+B && A>=1+B && C>=A ], cost: 3*A-3*B 5.11/2.39 5.11/2.39 16: evalEx6bb3in -> evalEx6bb3in : A'=1+B, [ C>=1+B && B>=A ], cost: 3-3*A+3*B 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Chained accelerated rules (with incoming rules): 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 9: evalEx6start -> evalEx6bb3in : A'=B, B'=A, [], cost: 2 5.11/2.39 5.11/2.39 17: evalEx6start -> evalEx6bb3in : A'=B, B'=C, [ C>=1+A && B>=1+A && B>=C ], cost: 2+3*C-3*A 5.11/2.39 5.11/2.39 18: evalEx6start -> evalEx6bb3in : A'=B, [ C>=1+A && B>=1+A && C>=B ], cost: 2-3*A+3*B 5.11/2.39 5.11/2.39 19: evalEx6start -> evalEx6bb3in : A'=1+A, B'=A, [ C>=1+A && A>=B ], cost: 5+3*A-3*B 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Removed unreachable locations (and leaf rules with constant cost): 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 17: evalEx6start -> evalEx6bb3in : A'=B, B'=C, [ C>=1+A && B>=1+A && B>=C ], cost: 2+3*C-3*A 5.11/2.39 5.11/2.39 18: evalEx6start -> evalEx6bb3in : A'=B, [ C>=1+A && B>=1+A && C>=B ], cost: 2-3*A+3*B 5.11/2.39 5.11/2.39 19: evalEx6start -> evalEx6bb3in : A'=1+A, B'=A, [ C>=1+A && A>=B ], cost: 5+3*A-3*B 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 ### Computing asymptotic complexity ### 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Fully simplified ITS problem 5.11/2.39 5.11/2.39 Start location: evalEx6start 5.11/2.39 5.11/2.39 17: evalEx6start -> evalEx6bb3in : A'=B, B'=C, [ C>=1+A && B>=1+A && B>=C ], cost: 2+3*C-3*A 5.11/2.39 5.11/2.39 18: evalEx6start -> evalEx6bb3in : A'=B, [ C>=1+A && B>=1+A && C>=B ], cost: 2-3*A+3*B 5.11/2.39 5.11/2.39 19: evalEx6start -> evalEx6bb3in : A'=1+A, B'=A, [ C>=1+A && A>=B ], cost: 5+3*A-3*B 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Computing asymptotic complexity for rule 17 5.11/2.39 5.11/2.39 Solved the limit problem by the following transformations: 5.11/2.39 5.11/2.39 Created initial limit problem: 5.11/2.39 5.11/2.39 1-C+B (+/+!), -A+B (+/+!), 2+3*C-3*A (+), C-A (+/+!) [not solved] 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 removing all constraints (solved by SMT) 5.11/2.39 5.11/2.39 resulting limit problem: [solved] 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 applying transformation rule (C) using substitution {C==0,A==-n,B==0} 5.11/2.39 5.11/2.39 resulting limit problem: 5.11/2.39 5.11/2.39 [solved] 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Solution: 5.11/2.39 5.11/2.39 C / 0 5.11/2.39 5.11/2.39 A / -n 5.11/2.39 5.11/2.39 B / 0 5.11/2.39 5.11/2.39 Resulting cost 2+3*n has complexity: Poly(n^1) 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Found new complexity Poly(n^1). 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 Obtained the following overall complexity (w.r.t. the length of the input n): 5.11/2.39 5.11/2.39 Complexity: Poly(n^1) 5.11/2.39 5.11/2.39 Cpx degree: 1 5.11/2.39 5.11/2.39 Solved cost: 2+3*n 5.11/2.39 5.11/2.39 Rule cost: 2+3*C-3*A 5.11/2.39 5.11/2.39 Rule guard: [ C>=1+A && B>=1+A && B>=C ] 5.11/2.39 5.11/2.39 5.11/2.39 5.11/2.39 WORST_CASE(Omega(n^1),?) 5.11/2.39 5.11/2.39 5.11/2.39 ---------------------------------------- 5.11/2.39 5.11/2.39 (4) 5.11/2.39 BOUNDS(n^1, INF) 5.11/2.41 EOF