5.40/2.36 WORST_CASE(Omega(n^1), O(n^1)) 5.40/2.36 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 5.40/2.36 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.40/2.36 5.40/2.36 5.40/2.36 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 5.40/2.36 5.40/2.36 (0) CpxIntTrs 5.40/2.36 (1) Koat Proof [FINISHED, 631 ms] 5.40/2.36 (2) BOUNDS(1, n^1) 5.40/2.36 (3) Loat Proof [FINISHED, 631 ms] 5.40/2.36 (4) BOUNDS(n^1, INF) 5.40/2.36 5.40/2.36 5.40/2.36 ---------------------------------------- 5.40/2.36 5.40/2.36 (0) 5.40/2.36 Obligation: 5.40/2.36 Complexity Int TRS consisting of the following rules: 5.40/2.36 evalfstart(A, B, C) -> Com_1(evalfentryin(A, B, C)) :|: TRUE 5.40/2.36 evalfentryin(A, B, C) -> Com_1(evalfbb3in(C, B, A)) :|: A >= 1 && B >= A + 1 5.40/2.36 evalfbb3in(A, B, C) -> Com_1(evalfbbin(A, B, C)) :|: C >= 1 && B >= C + 1 5.40/2.36 evalfbb3in(A, B, C) -> Com_1(evalfreturnin(A, B, C)) :|: 0 >= C 5.40/2.36 evalfbb3in(A, B, C) -> Com_1(evalfreturnin(A, B, C)) :|: C >= B 5.40/2.36 evalfbbin(A, B, C) -> Com_1(evalfbb1in(A, B, C)) :|: A >= 1 5.40/2.36 evalfbbin(A, B, C) -> Com_1(evalfbb2in(A, B, C)) :|: 0 >= A 5.40/2.36 evalfbb1in(A, B, C) -> Com_1(evalfbb3in(A, B, C + 1)) :|: TRUE 5.40/2.36 evalfbb2in(A, B, C) -> Com_1(evalfbb3in(A, B, C - 1)) :|: TRUE 5.40/2.36 evalfreturnin(A, B, C) -> Com_1(evalfstop(A, B, C)) :|: TRUE 5.40/2.36 5.40/2.36 The start-symbols are:[evalfstart_3] 5.40/2.36 5.40/2.36 5.40/2.36 ---------------------------------------- 5.40/2.36 5.40/2.36 (1) Koat Proof (FINISHED) 5.40/2.36 YES(?, 3*ar_0 + 6*ar_1 + 15) 5.40/2.36 5.40/2.36 5.40/2.36 5.40/2.36 Initial complexity problem: 5.40/2.36 5.40/2.36 1: T: 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= 1 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 5.40/2.36 5.40/2.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.36 5.40/2.36 start location: koat_start 5.40/2.36 5.40/2.36 leaf cost: 0 5.40/2.36 5.40/2.36 5.40/2.36 5.40/2.36 Repeatedly propagating knowledge in problem 1 produces the following problem: 5.40/2.36 5.40/2.36 2: T: 5.40/2.36 5.40/2.36 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 5.40/2.36 5.40/2.36 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.36 5.40/2.36 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 A polynomial rank function with 5.40/2.37 5.40/2.37 Pol(evalfstart) = 2 5.40/2.37 5.40/2.37 Pol(evalfentryin) = 2 5.40/2.37 5.40/2.37 Pol(evalfbb3in) = 2 5.40/2.37 5.40/2.37 Pol(evalfbbin) = 2 5.40/2.37 5.40/2.37 Pol(evalfreturnin) = 1 5.40/2.37 5.40/2.37 Pol(evalfbb1in) = 2 5.40/2.37 5.40/2.37 Pol(evalfbb2in) = 2 5.40/2.37 5.40/2.37 Pol(evalfstop) = 0 5.40/2.37 5.40/2.37 Pol(koat_start) = 2 5.40/2.37 5.40/2.37 orients all transitions weakly and the transitions 5.40/2.37 5.40/2.37 evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 strictly and produces the following problem: 5.40/2.37 5.40/2.37 3: T: 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Applied AI with 'oct' on problem 3 to obtain the following invariants: 5.40/2.37 5.40/2.37 For symbol evalfbb1in: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ X_1 + X_3 - 2 >= 0 /\ X_2 - 2 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ X_1 - 1 >= 0 5.40/2.37 5.40/2.37 For symbol evalfbb2in: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ X_2 - 2 >= 0 /\ -X_1 + X_2 - 2 >= 0 /\ -X_1 >= 0 5.40/2.37 5.40/2.37 For symbol evalfbb3in: X_2 - 2 >= 0 5.40/2.37 5.40/2.37 For symbol evalfbbin: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ X_2 - 2 >= 0 5.40/2.37 5.40/2.37 For symbol evalfreturnin: X_2 - 2 >= 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 This yielded the following problem: 5.40/2.37 5.40/2.37 4: T: 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] with all transitions in problem 4, the following new transition is obtained: 5.40/2.37 5.40/2.37 koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 5: T: 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Testing for reachability in the complexity graph removes the following transition from problem 5: 5.40/2.37 5.40/2.37 evalfstart(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 6: T: 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] with all transitions in problem 6, the following new transition is obtained: 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 7: T: 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] with all transitions in problem 7, the following new transition is obtained: 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 8: T: 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Testing for reachability in the complexity graph removes the following transition from problem 8: 5.40/2.37 5.40/2.37 evalfreturnin(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 9: T: 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 ] with all transitions in problem 9, the following new transition is obtained: 5.40/2.37 5.40/2.37 evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 10: T: 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Testing for reachability in the complexity graph removes the following transition from problem 10: 5.40/2.37 5.40/2.37 evalfbb1in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 11: T: 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 ] with all transitions in problem 11, the following new transition is obtained: 5.40/2.37 5.40/2.37 evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 12: T: 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Testing for reachability in the complexity graph removes the following transition from problem 12: 5.40/2.37 5.40/2.37 evalfbb2in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 - 2 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 13: T: 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 ] with all transitions in problem 13, the following new transition is obtained: 5.40/2.37 5.40/2.37 evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 14: T: 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfentryin(ar_0, ar_1, ar_2)) [ 0 <= 0 ] with all transitions in problem 14, the following new transition is obtained: 5.40/2.37 5.40/2.37 koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 15: T: 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 3) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Testing for reachability in the complexity graph removes the following transition from problem 15: 5.40/2.37 5.40/2.37 evalfentryin(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 16: T: 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 3) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 By chaining the transition evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 ] with all transitions in problem 16, the following new transitions are obtained: 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 We thus obtain the following problem: 5.40/2.37 5.40/2.37 17: T: 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 3) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Repeatedly propagating knowledge in problem 17 produces the following problem: 5.40/2.37 5.40/2.37 18: T: 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 3) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 A polynomial rank function with 5.40/2.37 5.40/2.37 Pol(evalfbb3in) = V_2 - V_3 5.40/2.37 5.40/2.37 and size complexities 5.40/2.37 5.40/2.37 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\\ ar_0 >= 1 /\\ ar_1 >= ar_0 + 1 /\\ ar_1 - 2 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\\ ar_0 >= 1 /\\ ar_1 >= ar_0 + 1 /\\ ar_1 - 2 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\\ ar_0 >= 1 /\\ ar_1 >= ar_0 + 1 /\\ ar_1 - 2 >= 0 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-2) = ar_1 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ ar_2 >= ar_1 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ ar_2 >= ar_1 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ ar_2 >= ar_1 ]", 0-2) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ 0 >= ar_2 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ 0 >= ar_2 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ 0 >= ar_2 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-2) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 orients the transitions 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 weakly and the transition 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 strictly and produces the following problem: 5.40/2.37 5.40/2.37 19: T: 5.40/2.37 5.40/2.37 (Comp: ?, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2*ar_1, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 3) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 A polynomial rank function with 5.40/2.37 5.40/2.37 Pol(evalfbb3in) = V_3 5.40/2.37 5.40/2.37 and size complexities 5.40/2.37 5.40/2.37 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\\ ar_0 >= 1 /\\ ar_1 >= ar_0 + 1 /\\ ar_1 - 2 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\\ ar_0 >= 1 /\\ ar_1 >= ar_0 + 1 /\\ ar_1 - 2 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\\ ar_0 >= 1 /\\ ar_1 >= ar_0 + 1 /\\ ar_1 - 2 >= 0 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-2) = ar_1 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_1 - 2 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ ar_2 >= ar_1 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ ar_2 >= ar_1 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ ar_2 >= ar_1 ]", 0-2) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ 0 >= ar_2 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ 0 >= ar_2 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\\ 0 >= ar_2 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ ar_0 >= 1 /\\ ar_0 + ar_2 - 2 >= 0 /\\ ar_0 + ar_1 - 3 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-2) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-0) = ar_2 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-1) = ar_1 5.40/2.37 5.40/2.37 S("evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\\ ar_2 >= 1 /\\ ar_1 >= ar_2 + 1 /\\ ar_1 - ar_2 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 3 >= 0 /\\ 0 >= ar_0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_1 - 2 >= 0 /\\ -ar_0 >= 0 ]", 0-2) = ar_0 5.40/2.37 5.40/2.37 orients the transitions 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 weakly and the transition 5.40/2.37 5.40/2.37 evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 strictly and produces the following problem: 5.40/2.37 5.40/2.37 20: T: 5.40/2.37 5.40/2.37 (Comp: ar_0, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2*ar_1, Cost: 3) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - 2 >= 0 /\ ar_2 >= 1 /\ ar_1 >= ar_2 + 1 /\ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ 0 >= ar_2 ] 5.40/2.37 5.40/2.37 (Comp: 2, Cost: 2) evalfbb3in(ar_0, ar_1, ar_2) -> Com_1(evalfstop(ar_0, ar_1, ar_2)) [ ar_1 - 2 >= 0 /\ ar_2 >= ar_1 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 - 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ 0 >= ar_0 /\ -ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_1 - 2 >= 0 /\ -ar_0 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 2) evalfbbin(ar_0, ar_1, ar_2) -> Com_1(evalfbb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 3 >= 0 /\ ar_1 - 2 >= 0 /\ ar_0 >= 1 /\ ar_0 + ar_2 - 2 >= 0 /\ ar_0 + ar_1 - 3 >= 0 /\ ar_0 - 1 >= 0 ] 5.40/2.37 5.40/2.37 (Comp: 1, Cost: 3) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfbbin(ar_2, ar_1, ar_0)) [ 0 <= 0 /\ ar_0 >= 1 /\ ar_1 >= ar_0 + 1 /\ ar_1 - 2 >= 0 ] 5.40/2.37 5.40/2.37 start location: koat_start 5.40/2.37 5.40/2.37 leaf cost: 0 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Complexity upper bound 3*ar_0 + 6*ar_1 + 15 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Time: 0.681 sec (SMT: 0.561 sec) 5.40/2.37 5.40/2.37 5.40/2.37 ---------------------------------------- 5.40/2.37 5.40/2.37 (2) 5.40/2.37 BOUNDS(1, n^1) 5.40/2.37 5.40/2.37 ---------------------------------------- 5.40/2.37 5.40/2.37 (3) Loat Proof (FINISHED) 5.40/2.37 5.40/2.37 5.40/2.37 ### Pre-processing the ITS problem ### 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Initial linear ITS problem 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 0: evalfstart -> evalfentryin : [], cost: 1 5.40/2.37 5.40/2.37 1: evalfentryin -> evalfbb3in : A'=C, C'=A, [ A>=1 && B>=1+A ], cost: 1 5.40/2.37 5.40/2.37 2: evalfbb3in -> evalfbbin : [ C>=1 && B>=1+C ], cost: 1 5.40/2.37 5.40/2.37 3: evalfbb3in -> evalfreturnin : [ 0>=C ], cost: 1 5.40/2.37 5.40/2.37 4: evalfbb3in -> evalfreturnin : [ C>=B ], cost: 1 5.40/2.37 5.40/2.37 5: evalfbbin -> evalfbb1in : [ A>=1 ], cost: 1 5.40/2.37 5.40/2.37 6: evalfbbin -> evalfbb2in : [ 0>=A ], cost: 1 5.40/2.37 5.40/2.37 7: evalfbb1in -> evalfbb3in : C'=1+C, [], cost: 1 5.40/2.37 5.40/2.37 8: evalfbb2in -> evalfbb3in : C'=-1+C, [], cost: 1 5.40/2.37 5.40/2.37 9: evalfreturnin -> evalfstop : [], cost: 1 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Removed unreachable and leaf rules: 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 0: evalfstart -> evalfentryin : [], cost: 1 5.40/2.37 5.40/2.37 1: evalfentryin -> evalfbb3in : A'=C, C'=A, [ A>=1 && B>=1+A ], cost: 1 5.40/2.37 5.40/2.37 2: evalfbb3in -> evalfbbin : [ C>=1 && B>=1+C ], cost: 1 5.40/2.37 5.40/2.37 5: evalfbbin -> evalfbb1in : [ A>=1 ], cost: 1 5.40/2.37 5.40/2.37 6: evalfbbin -> evalfbb2in : [ 0>=A ], cost: 1 5.40/2.37 5.40/2.37 7: evalfbb1in -> evalfbb3in : C'=1+C, [], cost: 1 5.40/2.37 5.40/2.37 8: evalfbb2in -> evalfbb3in : C'=-1+C, [], cost: 1 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 ### Simplification by acceleration and chaining ### 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Eliminated locations (on linear paths): 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 10: evalfstart -> evalfbb3in : A'=C, C'=A, [ A>=1 && B>=1+A ], cost: 2 5.40/2.37 5.40/2.37 2: evalfbb3in -> evalfbbin : [ C>=1 && B>=1+C ], cost: 1 5.40/2.37 5.40/2.37 11: evalfbbin -> evalfbb3in : C'=1+C, [ A>=1 ], cost: 2 5.40/2.37 5.40/2.37 12: evalfbbin -> evalfbb3in : C'=-1+C, [ 0>=A ], cost: 2 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Eliminated locations (on tree-shaped paths): 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 10: evalfstart -> evalfbb3in : A'=C, C'=A, [ A>=1 && B>=1+A ], cost: 2 5.40/2.37 5.40/2.37 13: evalfbb3in -> evalfbb3in : C'=1+C, [ C>=1 && B>=1+C && A>=1 ], cost: 3 5.40/2.37 5.40/2.37 14: evalfbb3in -> evalfbb3in : C'=-1+C, [ C>=1 && B>=1+C && 0>=A ], cost: 3 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Accelerating simple loops of location 2. 5.40/2.37 5.40/2.37 Accelerating the following rules: 5.40/2.37 5.40/2.37 13: evalfbb3in -> evalfbb3in : C'=1+C, [ C>=1 && B>=1+C && A>=1 ], cost: 3 5.40/2.37 5.40/2.37 14: evalfbb3in -> evalfbb3in : C'=-1+C, [ C>=1 && B>=1+C && 0>=A ], cost: 3 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Accelerated rule 13 with metering function -C+B, yielding the new rule 15. 5.40/2.37 5.40/2.37 Accelerated rule 14 with metering function C, yielding the new rule 16. 5.40/2.37 5.40/2.37 Removing the simple loops: 13 14. 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Accelerated all simple loops using metering functions (where possible): 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 10: evalfstart -> evalfbb3in : A'=C, C'=A, [ A>=1 && B>=1+A ], cost: 2 5.40/2.37 5.40/2.37 15: evalfbb3in -> evalfbb3in : C'=B, [ C>=1 && B>=1+C && A>=1 ], cost: -3*C+3*B 5.40/2.37 5.40/2.37 16: evalfbb3in -> evalfbb3in : C'=0, [ C>=1 && B>=1+C && 0>=A ], cost: 3*C 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Chained accelerated rules (with incoming rules): 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 10: evalfstart -> evalfbb3in : A'=C, C'=A, [ A>=1 && B>=1+A ], cost: 2 5.40/2.37 5.40/2.37 17: evalfstart -> evalfbb3in : A'=C, C'=B, [ A>=1 && B>=1+A && C>=1 ], cost: 2-3*A+3*B 5.40/2.37 5.40/2.37 18: evalfstart -> evalfbb3in : A'=C, C'=0, [ A>=1 && B>=1+A && 0>=C ], cost: 2+3*A 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Removed unreachable locations (and leaf rules with constant cost): 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 17: evalfstart -> evalfbb3in : A'=C, C'=B, [ A>=1 && B>=1+A && C>=1 ], cost: 2-3*A+3*B 5.40/2.37 5.40/2.37 18: evalfstart -> evalfbb3in : A'=C, C'=0, [ A>=1 && B>=1+A && 0>=C ], cost: 2+3*A 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 ### Computing asymptotic complexity ### 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Fully simplified ITS problem 5.40/2.37 5.40/2.37 Start location: evalfstart 5.40/2.37 5.40/2.37 17: evalfstart -> evalfbb3in : A'=C, C'=B, [ A>=1 && B>=1+A && C>=1 ], cost: 2-3*A+3*B 5.40/2.37 5.40/2.37 18: evalfstart -> evalfbb3in : A'=C, C'=0, [ A>=1 && B>=1+A && 0>=C ], cost: 2+3*A 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Computing asymptotic complexity for rule 17 5.40/2.37 5.40/2.37 Solved the limit problem by the following transformations: 5.40/2.37 5.40/2.37 Created initial limit problem: 5.40/2.37 5.40/2.37 2-3*A+3*B (+), C (+/+!), A (+/+!), -A+B (+/+!) [not solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 applying transformation rule (C) using substitution {A==1} 5.40/2.37 5.40/2.37 resulting limit problem: 5.40/2.37 5.40/2.37 1 (+/+!), C (+/+!), -1+B (+/+!), -1+3*B (+) [not solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 applying transformation rule (C) using substitution {B==1+A} 5.40/2.37 5.40/2.37 resulting limit problem: 5.40/2.37 5.40/2.37 1 (+/+!), C (+/+!), A (+/+!), 2+3*A (+) [not solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 applying transformation rule (C) using substitution {C==1} 5.40/2.37 5.40/2.37 resulting limit problem: 5.40/2.37 5.40/2.37 1 (+/+!), A (+/+!), 2+3*A (+) [not solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 applying transformation rule (B), deleting 1 (+/+!) 5.40/2.37 5.40/2.37 resulting limit problem: 5.40/2.37 5.40/2.37 A (+/+!), 2+3*A (+) [not solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 applying transformation rule (D), replacing 2+3*A (+) by 3*A (+) 5.40/2.37 5.40/2.37 resulting limit problem: 5.40/2.37 5.40/2.37 3*A (+), A (+/+!) [not solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 applying transformation rule (A), replacing 3*A (+) by A (+) and 3 (+!) using + limit vector (+,+!) 5.40/2.37 5.40/2.37 resulting limit problem: 5.40/2.37 5.40/2.37 3 (+!), A (+) [not solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 applying transformation rule (B), deleting 3 (+!) 5.40/2.37 5.40/2.37 resulting limit problem: 5.40/2.37 5.40/2.37 A (+) [solved] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Solution: 5.40/2.37 5.40/2.37 C / 1 5.40/2.37 5.40/2.37 A / 1 5.40/2.37 5.40/2.37 B / 1+n 5.40/2.37 5.40/2.37 Resulting cost 2+3*n has complexity: Poly(n^1) 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Found new complexity Poly(n^1). 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 Obtained the following overall complexity (w.r.t. the length of the input n): 5.40/2.37 5.40/2.37 Complexity: Poly(n^1) 5.40/2.37 5.40/2.37 Cpx degree: 1 5.40/2.37 5.40/2.37 Solved cost: 2+3*n 5.40/2.37 5.40/2.37 Rule cost: 2-3*A+3*B 5.40/2.37 5.40/2.37 Rule guard: [ A>=1 && B>=1+A && C>=1 ] 5.40/2.37 5.40/2.37 5.40/2.37 5.40/2.37 WORST_CASE(Omega(n^1),?) 5.40/2.37 5.40/2.37 5.40/2.37 ---------------------------------------- 5.40/2.37 5.40/2.37 (4) 5.40/2.37 BOUNDS(n^1, INF) 5.49/2.40 EOF