4.65/2.19 WORST_CASE(Omega(n^2), O(n^2)) 4.65/2.20 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.65/2.20 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.65/2.20 4.65/2.20 4.65/2.20 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 4.65/2.20 4.65/2.20 (0) CpxIntTrs 4.65/2.20 (1) Koat Proof [FINISHED, 53 ms] 4.65/2.20 (2) BOUNDS(1, n^2) 4.65/2.20 (3) Loat Proof [FINISHED, 507 ms] 4.65/2.20 (4) BOUNDS(n^2, INF) 4.65/2.20 4.65/2.20 4.65/2.20 ---------------------------------------- 4.65/2.20 4.65/2.20 (0) 4.65/2.20 Obligation: 4.65/2.20 Complexity Int TRS consisting of the following rules: 4.65/2.20 evalaxstart(A, B, C) -> Com_1(evalaxentryin(A, B, C)) :|: TRUE 4.65/2.20 evalaxentryin(A, B, C) -> Com_1(evalaxbbin(0, B, C)) :|: TRUE 4.65/2.20 evalaxbbin(A, B, C) -> Com_1(evalaxbb2in(A, 0, C)) :|: TRUE 4.65/2.20 evalaxbb2in(A, B, C) -> Com_1(evalaxbb1in(A, B, C)) :|: C >= 2 + B 4.65/2.20 evalaxbb2in(A, B, C) -> Com_1(evalaxbb3in(A, B, C)) :|: B + 1 >= C 4.65/2.20 evalaxbb1in(A, B, C) -> Com_1(evalaxbb2in(A, B + 1, C)) :|: TRUE 4.65/2.20 evalaxbb3in(A, B, C) -> Com_1(evalaxbbin(A + 1, B, C)) :|: B + 1 >= C && C >= 3 + A 4.65/2.20 evalaxbb3in(A, B, C) -> Com_1(evalaxreturnin(A, B, C)) :|: C >= 2 + B 4.65/2.20 evalaxbb3in(A, B, C) -> Com_1(evalaxreturnin(A, B, C)) :|: A + 2 >= C 4.65/2.20 evalaxreturnin(A, B, C) -> Com_1(evalaxstop(A, B, C)) :|: TRUE 4.65/2.20 4.65/2.20 The start-symbols are:[evalaxstart_3] 4.65/2.20 4.65/2.20 4.65/2.20 ---------------------------------------- 4.65/2.20 4.65/2.20 (1) Koat Proof (FINISHED) 4.65/2.20 YES(?, 5*ar_2 + 2*ar_2^2 + 8) 4.65/2.20 4.65/2.20 4.65/2.20 4.65/2.20 Initial complexity problem: 4.65/2.20 4.65/2.20 1: T: 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.20 4.65/2.20 start location: koat_start 4.65/2.20 4.65/2.20 leaf cost: 0 4.65/2.20 4.65/2.20 4.65/2.20 4.65/2.20 Testing for reachability in the complexity graph removes the following transition from problem 1: 4.65/2.20 4.65/2.20 evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.20 4.65/2.20 We thus obtain the following problem: 4.65/2.20 4.65/2.20 2: T: 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.20 4.65/2.20 start location: koat_start 4.65/2.20 4.65/2.20 leaf cost: 0 4.65/2.20 4.65/2.20 4.65/2.20 4.65/2.20 Repeatedly propagating knowledge in problem 2 produces the following problem: 4.65/2.20 4.65/2.20 3: T: 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.20 4.65/2.20 start location: koat_start 4.65/2.20 4.65/2.20 leaf cost: 0 4.65/2.20 4.65/2.20 4.65/2.20 4.65/2.20 A polynomial rank function with 4.65/2.20 4.65/2.20 Pol(evalaxreturnin) = 1 4.65/2.20 4.65/2.20 Pol(evalaxstop) = 0 4.65/2.20 4.65/2.20 Pol(evalaxbb3in) = 2 4.65/2.20 4.65/2.20 Pol(evalaxbbin) = 2 4.65/2.20 4.65/2.20 Pol(evalaxbb1in) = 2 4.65/2.20 4.65/2.20 Pol(evalaxbb2in) = 2 4.65/2.20 4.65/2.20 Pol(evalaxentryin) = 2 4.65/2.20 4.65/2.20 Pol(evalaxstart) = 2 4.65/2.20 4.65/2.20 Pol(koat_start) = 2 4.65/2.20 4.65/2.20 orients all transitions weakly and the transitions 4.65/2.20 4.65/2.20 evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.20 4.65/2.20 strictly and produces the following problem: 4.65/2.20 4.65/2.20 4: T: 4.65/2.20 4.65/2.20 (Comp: 2, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.20 4.65/2.20 start location: koat_start 4.65/2.20 4.65/2.20 leaf cost: 0 4.65/2.20 4.65/2.20 4.65/2.20 4.65/2.20 A polynomial rank function with 4.65/2.20 4.65/2.20 Pol(evalaxreturnin) = -V_1 + V_3 4.65/2.20 4.65/2.20 Pol(evalaxstop) = -V_1 + V_3 4.65/2.20 4.65/2.20 Pol(evalaxbb3in) = -V_1 + V_3 4.65/2.20 4.65/2.20 Pol(evalaxbbin) = -V_1 + V_3 4.65/2.20 4.65/2.20 Pol(evalaxbb1in) = -V_1 + V_3 4.65/2.20 4.65/2.20 Pol(evalaxbb2in) = -V_1 + V_3 4.65/2.20 4.65/2.20 Pol(evalaxentryin) = V_3 4.65/2.20 4.65/2.20 Pol(evalaxstart) = V_3 4.65/2.20 4.65/2.20 Pol(koat_start) = V_3 4.65/2.20 4.65/2.20 orients all transitions weakly and the transition 4.65/2.20 4.65/2.20 evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.20 4.65/2.20 strictly and produces the following problem: 4.65/2.20 4.65/2.20 5: T: 4.65/2.20 4.65/2.20 (Comp: 2, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ar_2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.20 4.65/2.20 (Comp: ?, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.20 4.65/2.20 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.21 4.65/2.21 start location: koat_start 4.65/2.21 4.65/2.21 leaf cost: 0 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Repeatedly propagating knowledge in problem 5 produces the following problem: 4.65/2.21 4.65/2.21 6: T: 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.21 4.65/2.21 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2 + 1, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.21 4.65/2.21 start location: koat_start 4.65/2.21 4.65/2.21 leaf cost: 0 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 A polynomial rank function with 4.65/2.21 4.65/2.21 Pol(evalaxbb2in) = 1 4.65/2.21 4.65/2.21 Pol(evalaxbb3in) = 0 4.65/2.21 4.65/2.21 Pol(evalaxbb1in) = 1 4.65/2.21 4.65/2.21 and size complexities 4.65/2.21 4.65/2.21 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.65/2.21 4.65/2.21 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.65/2.21 4.65/2.21 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.65/2.21 4.65/2.21 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.65/2.21 4.65/2.21 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2))", 0-0) = 0 4.65/2.21 4.65/2.21 S("evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2))", 0-1) = ar_1 4.65/2.21 4.65/2.21 S("evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-1) = 0 4.65/2.21 4.65/2.21 S("evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 orients the transitions 4.65/2.21 4.65/2.21 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.21 4.65/2.21 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.21 4.65/2.21 evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.21 4.65/2.21 weakly and the transition 4.65/2.21 4.65/2.21 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.21 4.65/2.21 strictly and produces the following problem: 4.65/2.21 4.65/2.21 7: T: 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.21 4.65/2.21 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2 + 1, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.21 4.65/2.21 start location: koat_start 4.65/2.21 4.65/2.21 leaf cost: 0 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 A polynomial rank function with 4.65/2.21 4.65/2.21 Pol(evalaxbb2in) = -V_2 + V_3 4.65/2.21 4.65/2.21 Pol(evalaxbb1in) = -V_2 + V_3 - 1 4.65/2.21 4.65/2.21 and size complexities 4.65/2.21 4.65/2.21 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.65/2.21 4.65/2.21 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.65/2.21 4.65/2.21 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.65/2.21 4.65/2.21 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.65/2.21 4.65/2.21 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2))", 0-0) = 0 4.65/2.21 4.65/2.21 S("evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2))", 0-1) = ar_1 4.65/2.21 4.65/2.21 S("evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-1) = 0 4.65/2.21 4.65/2.21 S("evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-2) = ar_2 4.65/2.21 4.65/2.21 S("evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-0) = ar_2 4.65/2.21 4.65/2.21 S("evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-1) = ? 4.65/2.21 4.65/2.21 S("evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.65/2.21 4.65/2.21 orients the transitions 4.65/2.21 4.65/2.21 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.21 4.65/2.21 evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.21 4.65/2.21 weakly and the transition 4.65/2.21 4.65/2.21 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.21 4.65/2.21 strictly and produces the following problem: 4.65/2.21 4.65/2.21 8: T: 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.21 4.65/2.21 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2^2 + ar_2, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2 + 1, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.21 4.65/2.21 start location: koat_start 4.65/2.21 4.65/2.21 leaf cost: 0 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Repeatedly propagating knowledge in problem 8 produces the following problem: 4.65/2.21 4.65/2.21 9: T: 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxreturnin(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxreturnin(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 4.65/2.21 4.65/2.21 (Comp: ar_2^2 + ar_2, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2^2 + ar_2, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 4.65/2.21 4.65/2.21 (Comp: ar_2 + 1, Cost: 1) evalaxbbin(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxentryin(ar_0, ar_1, ar_2) -> Com_1(evalaxbbin(0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxentryin(ar_0, ar_1, ar_2)) 4.65/2.21 4.65/2.21 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.65/2.21 4.65/2.21 start location: koat_start 4.65/2.21 4.65/2.21 leaf cost: 0 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Complexity upper bound 5*ar_2 + 2*ar_2^2 + 8 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Time: 0.146 sec (SMT: 0.131 sec) 4.65/2.21 4.65/2.21 4.65/2.21 ---------------------------------------- 4.65/2.21 4.65/2.21 (2) 4.65/2.21 BOUNDS(1, n^2) 4.65/2.21 4.65/2.21 ---------------------------------------- 4.65/2.21 4.65/2.21 (3) Loat Proof (FINISHED) 4.65/2.21 4.65/2.21 4.65/2.21 ### Pre-processing the ITS problem ### 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Initial linear ITS problem 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 0: evalaxstart -> evalaxentryin : [], cost: 1 4.65/2.21 4.65/2.21 1: evalaxentryin -> evalaxbbin : A'=0, [], cost: 1 4.65/2.21 4.65/2.21 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 4.65/2.21 4.65/2.21 3: evalaxbb2in -> evalaxbb1in : [ C>=2+B ], cost: 1 4.65/2.21 4.65/2.21 4: evalaxbb2in -> evalaxbb3in : [ 1+B>=C ], cost: 1 4.65/2.21 4.65/2.21 5: evalaxbb1in -> evalaxbb2in : B'=1+B, [], cost: 1 4.65/2.21 4.65/2.21 6: evalaxbb3in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 1 4.65/2.21 4.65/2.21 7: evalaxbb3in -> evalaxreturnin : [ C>=2+B ], cost: 1 4.65/2.21 4.65/2.21 8: evalaxbb3in -> evalaxreturnin : [ 2+A>=C ], cost: 1 4.65/2.21 4.65/2.21 9: evalaxreturnin -> evalaxstop : [], cost: 1 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Removed unreachable and leaf rules: 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 0: evalaxstart -> evalaxentryin : [], cost: 1 4.65/2.21 4.65/2.21 1: evalaxentryin -> evalaxbbin : A'=0, [], cost: 1 4.65/2.21 4.65/2.21 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 4.65/2.21 4.65/2.21 3: evalaxbb2in -> evalaxbb1in : [ C>=2+B ], cost: 1 4.65/2.21 4.65/2.21 4: evalaxbb2in -> evalaxbb3in : [ 1+B>=C ], cost: 1 4.65/2.21 4.65/2.21 5: evalaxbb1in -> evalaxbb2in : B'=1+B, [], cost: 1 4.65/2.21 4.65/2.21 6: evalaxbb3in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 1 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 ### Simplification by acceleration and chaining ### 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Eliminated locations (on linear paths): 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 4.65/2.21 4.65/2.21 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 4.65/2.21 4.65/2.21 11: evalaxbb2in -> evalaxbb2in : B'=1+B, [ C>=2+B ], cost: 2 4.65/2.21 4.65/2.21 12: evalaxbb2in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 2 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Accelerating simple loops of location 3. 4.65/2.21 4.65/2.21 Accelerating the following rules: 4.65/2.21 4.65/2.21 11: evalaxbb2in -> evalaxbb2in : B'=1+B, [ C>=2+B ], cost: 2 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Accelerated rule 11 with metering function -1+C-B, yielding the new rule 13. 4.65/2.21 4.65/2.21 Removing the simple loops: 11. 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Accelerated all simple loops using metering functions (where possible): 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 4.65/2.21 4.65/2.21 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 4.65/2.21 4.65/2.21 12: evalaxbb2in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 2 4.65/2.21 4.65/2.21 13: evalaxbb2in -> evalaxbb2in : B'=-1+C, [ C>=2+B ], cost: -2+2*C-2*B 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Chained accelerated rules (with incoming rules): 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 4.65/2.21 4.65/2.21 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 4.65/2.21 4.65/2.21 14: evalaxbbin -> evalaxbb2in : B'=-1+C, [ C>=2 ], cost: -1+2*C 4.65/2.21 4.65/2.21 12: evalaxbb2in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 2 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Eliminated locations (on tree-shaped paths): 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 4.65/2.21 4.65/2.21 15: evalaxbbin -> evalaxbbin : A'=1+A, B'=0, [ 1>=C && C>=3+A ], cost: 3 4.65/2.21 4.65/2.21 16: evalaxbbin -> evalaxbbin : A'=1+A, B'=-1+C, [ C>=2 && C>=3+A ], cost: 1+2*C 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Accelerating simple loops of location 2. 4.65/2.21 4.65/2.21 Accelerating the following rules: 4.65/2.21 4.65/2.21 15: evalaxbbin -> evalaxbbin : A'=1+A, B'=0, [ 1>=C && C>=3+A ], cost: 3 4.65/2.21 4.65/2.21 16: evalaxbbin -> evalaxbbin : A'=1+A, B'=-1+C, [ C>=2 && C>=3+A ], cost: 1+2*C 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Accelerated rule 15 with metering function -2+C-A, yielding the new rule 17. 4.65/2.21 4.65/2.21 Accelerated rule 16 with metering function -2+C-A, yielding the new rule 18. 4.65/2.21 4.65/2.21 Removing the simple loops: 15 16. 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Accelerated all simple loops using metering functions (where possible): 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 4.65/2.21 4.65/2.21 17: evalaxbbin -> evalaxbbin : A'=-2+C, B'=0, [ 1>=C && C>=3+A ], cost: -6+3*C-3*A 4.65/2.21 4.65/2.21 18: evalaxbbin -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=2 && C>=3+A ], cost: -2+C+2*C*(-2+C-A)-A 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Chained accelerated rules (with incoming rules): 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 4.65/2.21 4.65/2.21 19: evalaxstart -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=3 ], cost: 2*(-2+C)*C+C 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Removed unreachable locations (and leaf rules with constant cost): 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 19: evalaxstart -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=3 ], cost: 2*(-2+C)*C+C 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 ### Computing asymptotic complexity ### 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Fully simplified ITS problem 4.65/2.21 4.65/2.21 Start location: evalaxstart 4.65/2.21 4.65/2.21 19: evalaxstart -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=3 ], cost: 2*(-2+C)*C+C 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Computing asymptotic complexity for rule 19 4.65/2.21 4.65/2.21 Solved the limit problem by the following transformations: 4.65/2.21 4.65/2.21 Created initial limit problem: 4.65/2.21 4.65/2.21 -2+C (+/+!), 2*C^2-3*C (+) [not solved] 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 removing all constraints (solved by SMT) 4.65/2.21 4.65/2.21 resulting limit problem: [solved] 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 applying transformation rule (C) using substitution {C==n} 4.65/2.21 4.65/2.21 resulting limit problem: 4.65/2.21 4.65/2.21 [solved] 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Solution: 4.65/2.21 4.65/2.21 C / n 4.65/2.21 4.65/2.21 Resulting cost 2*n^2-3*n has complexity: Poly(n^2) 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Found new complexity Poly(n^2). 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 Obtained the following overall complexity (w.r.t. the length of the input n): 4.65/2.21 4.65/2.21 Complexity: Poly(n^2) 4.65/2.21 4.65/2.21 Cpx degree: 2 4.65/2.21 4.65/2.21 Solved cost: 2*n^2-3*n 4.65/2.21 4.65/2.21 Rule cost: 2*(-2+C)*C+C 4.65/2.21 4.65/2.21 Rule guard: [ C>=3 ] 4.65/2.21 4.65/2.21 4.65/2.21 4.65/2.21 WORST_CASE(Omega(n^2),?) 4.65/2.21 4.65/2.21 4.65/2.21 ---------------------------------------- 4.65/2.21 4.65/2.21 (4) 4.65/2.21 BOUNDS(n^2, INF) 4.65/2.23 EOF