4.50/2.22 WORST_CASE(Omega(n^1), O(n^1)) 4.50/2.22 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.50/2.22 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.50/2.22 4.50/2.22 4.50/2.22 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.50/2.22 4.50/2.22 (0) CpxIntTrs 4.50/2.22 (1) Koat Proof [FINISHED, 26 ms] 4.50/2.22 (2) BOUNDS(1, n^1) 4.50/2.22 (3) Loat Proof [FINISHED, 626 ms] 4.50/2.22 (4) BOUNDS(n^1, INF) 4.50/2.22 4.50/2.22 4.50/2.22 ---------------------------------------- 4.50/2.22 4.50/2.22 (0) 4.50/2.22 Obligation: 4.50/2.22 Complexity Int TRS consisting of the following rules: 4.50/2.22 evalwcet2start(A, B) -> Com_1(evalwcet2entryin(A, B)) :|: TRUE 4.50/2.22 evalwcet2entryin(A, B) -> Com_1(evalwcet2bb5in(A, B)) :|: TRUE 4.50/2.22 evalwcet2bb5in(A, B) -> Com_1(evalwcet2bb2in(A, 0)) :|: 4 >= A 4.50/2.22 evalwcet2bb5in(A, B) -> Com_1(evalwcet2returnin(A, B)) :|: A >= 5 4.50/2.22 evalwcet2bb2in(A, B) -> Com_1(evalwcet2bb1in(A, B)) :|: A >= 3 && 9 >= B 4.50/2.22 evalwcet2bb2in(A, B) -> Com_1(evalwcet2bb4in(A, B)) :|: 2 >= A 4.50/2.22 evalwcet2bb2in(A, B) -> Com_1(evalwcet2bb4in(A, B)) :|: B >= 10 4.50/2.22 evalwcet2bb1in(A, B) -> Com_1(evalwcet2bb2in(A, B + 1)) :|: TRUE 4.50/2.22 evalwcet2bb4in(A, B) -> Com_1(evalwcet2bb5in(A + 1, B)) :|: TRUE 4.50/2.22 evalwcet2returnin(A, B) -> Com_1(evalwcet2stop(A, B)) :|: TRUE 4.50/2.22 4.50/2.22 The start-symbols are:[evalwcet2start_2] 4.50/2.22 4.50/2.22 4.50/2.22 ---------------------------------------- 4.50/2.22 4.50/2.22 (1) Koat Proof (FINISHED) 4.50/2.22 YES(?, 56*ar_0 + 258) 4.50/2.22 4.50/2.22 4.50/2.22 4.50/2.22 Initial complexity problem: 4.50/2.22 4.50/2.22 1: T: 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1)) 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1)) 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.22 4.50/2.22 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ] 4.50/2.22 4.50/2.22 start location: koat_start 4.50/2.22 4.50/2.22 leaf cost: 0 4.50/2.22 4.50/2.22 4.50/2.22 4.50/2.22 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.50/2.22 4.50/2.22 2: T: 4.50/2.22 4.50/2.22 (Comp: 1, Cost: 1) evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1)) 4.50/2.22 4.50/2.22 (Comp: 1, Cost: 1) evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1)) 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.22 4.50/2.22 (Comp: ?, Cost: 1) evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.22 4.50/2.22 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ] 4.50/2.22 4.50/2.22 start location: koat_start 4.50/2.22 4.50/2.22 leaf cost: 0 4.50/2.22 4.50/2.22 4.50/2.22 4.50/2.22 A polynomial rank function with 4.50/2.22 4.50/2.22 Pol(evalwcet2start) = 2 4.50/2.22 4.50/2.22 Pol(evalwcet2entryin) = 2 4.50/2.22 4.50/2.22 Pol(evalwcet2bb5in) = 2 4.50/2.22 4.50/2.22 Pol(evalwcet2bb2in) = 2 4.50/2.22 4.50/2.22 Pol(evalwcet2returnin) = 1 4.50/2.22 4.50/2.22 Pol(evalwcet2bb1in) = 2 4.50/2.22 4.50/2.22 Pol(evalwcet2bb4in) = 2 4.50/2.22 4.50/2.22 Pol(evalwcet2stop) = 0 4.50/2.22 4.50/2.22 Pol(koat_start) = 2 4.50/2.22 4.50/2.22 orients all transitions weakly and the transitions 4.50/2.22 4.50/2.22 evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.22 4.50/2.22 evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.23 4.50/2.23 strictly and produces the following problem: 4.50/2.23 4.50/2.23 3: T: 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ] 4.50/2.23 4.50/2.23 start location: koat_start 4.50/2.23 4.50/2.23 leaf cost: 0 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 A polynomial rank function with 4.50/2.23 4.50/2.23 Pol(evalwcet2start) = -2*V_1 + 9 4.50/2.23 4.50/2.23 Pol(evalwcet2entryin) = -2*V_1 + 9 4.50/2.23 4.50/2.23 Pol(evalwcet2bb5in) = -2*V_1 + 9 4.50/2.23 4.50/2.23 Pol(evalwcet2bb2in) = -2*V_1 + 8 4.50/2.23 4.50/2.23 Pol(evalwcet2returnin) = -2*V_1 4.50/2.23 4.50/2.23 Pol(evalwcet2bb1in) = -2*V_1 + 8 4.50/2.23 4.50/2.23 Pol(evalwcet2bb4in) = -2*V_1 + 7 4.50/2.23 4.50/2.23 Pol(evalwcet2stop) = -2*V_1 4.50/2.23 4.50/2.23 Pol(koat_start) = -2*V_1 + 9 4.50/2.23 4.50/2.23 orients all transitions weakly and the transitions 4.50/2.23 4.50/2.23 evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.23 4.50/2.23 evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.23 4.50/2.23 strictly and produces the following problem: 4.50/2.23 4.50/2.23 4: T: 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ] 4.50/2.23 4.50/2.23 start location: koat_start 4.50/2.23 4.50/2.23 leaf cost: 0 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 A polynomial rank function with 4.50/2.23 4.50/2.23 Pol(evalwcet2bb4in) = 1 4.50/2.23 4.50/2.23 Pol(evalwcet2bb5in) = 0 4.50/2.23 4.50/2.23 Pol(evalwcet2bb2in) = 2 4.50/2.23 4.50/2.23 Pol(evalwcet2bb1in) = 2 4.50/2.23 4.50/2.23 and size complexities 4.50/2.23 4.50/2.23 S("koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ]", 0-0) = ar_0 4.50/2.23 4.50/2.23 S("koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ]", 0-1) = ar_1 4.50/2.23 4.50/2.23 S("evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1))", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1))", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1))", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1))", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1))", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1))", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ]", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ]", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\\ 9 >= ar_1 ]", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\\ 9 >= ar_1 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ]", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ]", 0-0) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ]", 0-1) = 0 4.50/2.23 4.50/2.23 S("evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1))", 0-0) = ar_0 4.50/2.23 4.50/2.23 S("evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1))", 0-1) = ar_1 4.50/2.23 4.50/2.23 S("evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1))", 0-0) = ar_0 4.50/2.23 4.50/2.23 S("evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1))", 0-1) = ar_1 4.50/2.23 4.50/2.23 orients the transitions 4.50/2.23 4.50/2.23 evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.23 4.50/2.23 evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.23 4.50/2.23 evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.23 4.50/2.23 weakly and the transitions 4.50/2.23 4.50/2.23 evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.23 4.50/2.23 evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.23 4.50/2.23 strictly and produces the following problem: 4.50/2.23 4.50/2.23 5: T: 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 6*ar_0 + 27, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.23 4.50/2.23 (Comp: 6*ar_0 + 27, Cost: 1) evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ] 4.50/2.23 4.50/2.23 start location: koat_start 4.50/2.23 4.50/2.23 leaf cost: 0 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 A polynomial rank function with 4.50/2.23 4.50/2.23 Pol(evalwcet2bb2in) = -V_2 + 10 4.50/2.23 4.50/2.23 Pol(evalwcet2bb1in) = -V_2 + 9 4.50/2.23 4.50/2.23 and size complexities 4.50/2.23 4.50/2.23 S("koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ]", 0-0) = ar_0 4.50/2.23 4.50/2.23 S("koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ]", 0-1) = ar_1 4.50/2.23 4.50/2.23 S("evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1))", 0-0) = 7*ar_0 + 64827 4.50/2.23 4.50/2.23 S("evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1))", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1))", 0-0) = 7*ar_0 + 1323 4.50/2.23 4.50/2.23 S("evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1))", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1))", 0-0) = 7*ar_0 + 1323 4.50/2.23 4.50/2.23 S("evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1))", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ]", 0-0) = 7*ar_0 + 1323 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ]", 0-0) = 7*ar_0 + 1323 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\\ 9 >= ar_1 ]", 0-0) = 7*ar_0 + 1323 4.50/2.23 4.50/2.23 S("evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\\ 9 >= ar_1 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ]", 0-0) = 7*ar_0 + 9261 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ]", 0-1) = ? 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ]", 0-0) = 7*ar_0 + 1323 4.50/2.23 4.50/2.23 S("evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ]", 0-1) = 0 4.50/2.23 4.50/2.23 S("evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1))", 0-0) = ar_0 4.50/2.23 4.50/2.23 S("evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1))", 0-1) = ar_1 4.50/2.23 4.50/2.23 S("evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1))", 0-0) = ar_0 4.50/2.23 4.50/2.23 S("evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1))", 0-1) = ar_1 4.50/2.23 4.50/2.23 orients the transitions 4.50/2.23 4.50/2.23 evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.23 4.50/2.23 weakly and the transition 4.50/2.23 4.50/2.23 evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 strictly and produces the following problem: 4.50/2.23 4.50/2.23 6: T: 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.23 4.50/2.23 (Comp: 20*ar_0 + 90, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 6*ar_0 + 27, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.23 4.50/2.23 (Comp: ?, Cost: 1) evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.23 4.50/2.23 (Comp: 6*ar_0 + 27, Cost: 1) evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ] 4.50/2.23 4.50/2.23 start location: koat_start 4.50/2.23 4.50/2.23 leaf cost: 0 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Repeatedly propagating knowledge in problem 6 produces the following problem: 4.50/2.23 4.50/2.23 7: T: 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2start(ar_0, ar_1) -> Com_1(evalwcet2entryin(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 1) evalwcet2entryin(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, 0)) [ 4 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2bb5in(ar_0, ar_1) -> Com_1(evalwcet2returnin(ar_0, ar_1)) [ ar_0 >= 5 ] 4.50/2.23 4.50/2.23 (Comp: 20*ar_0 + 90, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb1in(ar_0, ar_1)) [ ar_0 >= 3 /\ 9 >= ar_1 ] 4.50/2.23 4.50/2.23 (Comp: 2*ar_0 + 9, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ 2 >= ar_0 ] 4.50/2.23 4.50/2.23 (Comp: 6*ar_0 + 27, Cost: 1) evalwcet2bb2in(ar_0, ar_1) -> Com_1(evalwcet2bb4in(ar_0, ar_1)) [ ar_1 >= 10 ] 4.50/2.23 4.50/2.23 (Comp: 20*ar_0 + 90, Cost: 1) evalwcet2bb1in(ar_0, ar_1) -> Com_1(evalwcet2bb2in(ar_0, ar_1 + 1)) 4.50/2.23 4.50/2.23 (Comp: 6*ar_0 + 27, Cost: 1) evalwcet2bb4in(ar_0, ar_1) -> Com_1(evalwcet2bb5in(ar_0 + 1, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 2, Cost: 1) evalwcet2returnin(ar_0, ar_1) -> Com_1(evalwcet2stop(ar_0, ar_1)) 4.50/2.23 4.50/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalwcet2start(ar_0, ar_1)) [ 0 <= 0 ] 4.50/2.23 4.50/2.23 start location: koat_start 4.50/2.23 4.50/2.23 leaf cost: 0 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Complexity upper bound 56*ar_0 + 258 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Time: 0.088 sec (SMT: 0.078 sec) 4.50/2.23 4.50/2.23 4.50/2.23 ---------------------------------------- 4.50/2.23 4.50/2.23 (2) 4.50/2.23 BOUNDS(1, n^1) 4.50/2.23 4.50/2.23 ---------------------------------------- 4.50/2.23 4.50/2.23 (3) Loat Proof (FINISHED) 4.50/2.23 4.50/2.23 4.50/2.23 ### Pre-processing the ITS problem ### 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Initial linear ITS problem 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 0: evalwcet2start -> evalwcet2entryin : [], cost: 1 4.50/2.23 4.50/2.23 1: evalwcet2entryin -> evalwcet2bb5in : [], cost: 1 4.50/2.23 4.50/2.23 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 4.50/2.23 4.50/2.23 3: evalwcet2bb5in -> evalwcet2returnin : [ A>=5 ], cost: 1 4.50/2.23 4.50/2.23 4: evalwcet2bb2in -> evalwcet2bb1in : [ A>=3 && 9>=B ], cost: 1 4.50/2.23 4.50/2.23 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 4.50/2.23 4.50/2.23 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 4.50/2.23 4.50/2.23 7: evalwcet2bb1in -> evalwcet2bb2in : B'=1+B, [], cost: 1 4.50/2.23 4.50/2.23 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 4.50/2.23 4.50/2.23 9: evalwcet2returnin -> evalwcet2stop : [], cost: 1 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Removed unreachable and leaf rules: 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 0: evalwcet2start -> evalwcet2entryin : [], cost: 1 4.50/2.23 4.50/2.23 1: evalwcet2entryin -> evalwcet2bb5in : [], cost: 1 4.50/2.23 4.50/2.23 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 4.50/2.23 4.50/2.23 4: evalwcet2bb2in -> evalwcet2bb1in : [ A>=3 && 9>=B ], cost: 1 4.50/2.23 4.50/2.23 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 4.50/2.23 4.50/2.23 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 4.50/2.23 4.50/2.23 7: evalwcet2bb1in -> evalwcet2bb2in : B'=1+B, [], cost: 1 4.50/2.23 4.50/2.23 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 ### Simplification by acceleration and chaining ### 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Eliminated locations (on linear paths): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 4.50/2.23 4.50/2.23 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 4.50/2.23 4.50/2.23 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 4.50/2.23 4.50/2.23 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 4.50/2.23 4.50/2.23 11: evalwcet2bb2in -> evalwcet2bb2in : B'=1+B, [ A>=3 && 9>=B ], cost: 2 4.50/2.23 4.50/2.23 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Accelerating simple loops of location 3. 4.50/2.23 4.50/2.23 Accelerating the following rules: 4.50/2.23 4.50/2.23 11: evalwcet2bb2in -> evalwcet2bb2in : B'=1+B, [ A>=3 && 9>=B ], cost: 2 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Accelerated rule 11 with metering function 10-B, yielding the new rule 12. 4.50/2.23 4.50/2.23 Removing the simple loops: 11. 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Accelerated all simple loops using metering functions (where possible): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 4.50/2.23 4.50/2.23 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 4.50/2.23 4.50/2.23 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 4.50/2.23 4.50/2.23 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 4.50/2.23 4.50/2.23 12: evalwcet2bb2in -> evalwcet2bb2in : B'=10, [ A>=3 && 9>=B ], cost: 20-2*B 4.50/2.23 4.50/2.23 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Chained accelerated rules (with incoming rules): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 4.50/2.23 4.50/2.23 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 4.50/2.23 4.50/2.23 13: evalwcet2bb5in -> evalwcet2bb2in : B'=10, [ 4>=A && A>=3 ], cost: 21 4.50/2.23 4.50/2.23 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 4.50/2.23 4.50/2.23 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 4.50/2.23 4.50/2.23 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Eliminated locations (on tree-shaped paths): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 4.50/2.23 4.50/2.23 14: evalwcet2bb5in -> evalwcet2bb4in : B'=0, [ 2>=A ], cost: 2 4.50/2.23 4.50/2.23 15: evalwcet2bb5in -> evalwcet2bb4in : B'=10, [ 4>=A && A>=3 ], cost: 22 4.50/2.23 4.50/2.23 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Eliminated locations (on tree-shaped paths): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 4.50/2.23 4.50/2.23 16: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=0, [ 2>=A ], cost: 3 4.50/2.23 4.50/2.23 17: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=10, [ 4>=A && A>=3 ], cost: 23 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Accelerating simple loops of location 2. 4.50/2.23 4.50/2.23 Accelerating the following rules: 4.50/2.23 4.50/2.23 16: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=0, [ 2>=A ], cost: 3 4.50/2.23 4.50/2.23 17: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=10, [ 4>=A && A>=3 ], cost: 23 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Accelerated rule 16 with metering function 3-A, yielding the new rule 18. 4.50/2.23 4.50/2.23 Accelerated rule 17 with metering function 5-A, yielding the new rule 19. 4.50/2.23 4.50/2.23 Removing the simple loops: 16 17. 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Accelerated all simple loops using metering functions (where possible): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 4.50/2.23 4.50/2.23 18: evalwcet2bb5in -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 9-3*A 4.50/2.23 4.50/2.23 19: evalwcet2bb5in -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 115-23*A 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Chained accelerated rules (with incoming rules): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 4.50/2.23 4.50/2.23 20: evalwcet2start -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 11-3*A 4.50/2.23 4.50/2.23 21: evalwcet2start -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 117-23*A 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Removed unreachable locations (and leaf rules with constant cost): 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 20: evalwcet2start -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 11-3*A 4.50/2.23 4.50/2.23 21: evalwcet2start -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 117-23*A 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 ### Computing asymptotic complexity ### 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Fully simplified ITS problem 4.50/2.23 4.50/2.23 Start location: evalwcet2start 4.50/2.23 4.50/2.23 20: evalwcet2start -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 11-3*A 4.50/2.23 4.50/2.23 21: evalwcet2start -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 117-23*A 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Computing asymptotic complexity for rule 20 4.50/2.23 4.50/2.23 Solved the limit problem by the following transformations: 4.50/2.23 4.50/2.23 Created initial limit problem: 4.50/2.23 4.50/2.23 3-A (+/+!), 11-3*A (+) [not solved] 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 removing all constraints (solved by SMT) 4.50/2.23 4.50/2.23 resulting limit problem: [solved] 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 applying transformation rule (C) using substitution {A==-n} 4.50/2.23 4.50/2.23 resulting limit problem: 4.50/2.23 4.50/2.23 [solved] 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Solution: 4.50/2.23 4.50/2.23 A / -n 4.50/2.23 4.50/2.23 Resulting cost 11+3*n has complexity: Poly(n^1) 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Found new complexity Poly(n^1). 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 Obtained the following overall complexity (w.r.t. the length of the input n): 4.50/2.23 4.50/2.23 Complexity: Poly(n^1) 4.50/2.23 4.50/2.23 Cpx degree: 1 4.50/2.23 4.50/2.23 Solved cost: 11+3*n 4.50/2.23 4.50/2.23 Rule cost: 11-3*A 4.50/2.23 4.50/2.23 Rule guard: [ 2>=A ] 4.50/2.23 4.50/2.23 4.50/2.23 4.50/2.23 WORST_CASE(Omega(n^1),?) 4.50/2.23 4.50/2.23 4.50/2.23 ---------------------------------------- 4.50/2.23 4.50/2.23 (4) 4.50/2.23 BOUNDS(n^1, INF) 4.69/2.24 EOF