4.39/2.09 WORST_CASE(Omega(n^2), O(n^2)) 4.39/2.10 proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat 4.39/2.10 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.39/2.10 4.39/2.10 4.39/2.10 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 4.39/2.10 4.39/2.10 (0) CpxIntTrs 4.39/2.10 (1) Koat Proof [FINISHED, 18 ms] 4.39/2.10 (2) BOUNDS(1, n^2) 4.39/2.10 (3) Loat Proof [FINISHED, 424 ms] 4.39/2.10 (4) BOUNDS(n^2, INF) 4.39/2.10 4.39/2.10 4.39/2.10 ---------------------------------------- 4.39/2.10 4.39/2.10 (0) 4.39/2.10 Obligation: 4.39/2.10 Complexity Int TRS consisting of the following rules: 4.39/2.10 evalwhile2start(A, B, C) -> Com_1(evalwhile2entryin(A, B, C)) :|: TRUE 4.39/2.10 evalwhile2entryin(A, B, C) -> Com_1(evalwhile2bb4in(B, B, C)) :|: TRUE 4.39/2.10 evalwhile2bb4in(A, B, C) -> Com_1(evalwhile2bb2in(A, B, B)) :|: A >= 1 4.39/2.10 evalwhile2bb4in(A, B, C) -> Com_1(evalwhile2returnin(A, B, C)) :|: 0 >= A 4.39/2.10 evalwhile2bb2in(A, B, C) -> Com_1(evalwhile2bb1in(A, B, C)) :|: C >= 1 4.39/2.10 evalwhile2bb2in(A, B, C) -> Com_1(evalwhile2bb3in(A, B, C)) :|: 0 >= C 4.39/2.10 evalwhile2bb1in(A, B, C) -> Com_1(evalwhile2bb2in(A, B, C - 1)) :|: TRUE 4.39/2.10 evalwhile2bb3in(A, B, C) -> Com_1(evalwhile2bb4in(A - 1, B, C)) :|: TRUE 4.39/2.10 evalwhile2returnin(A, B, C) -> Com_1(evalwhile2stop(A, B, C)) :|: TRUE 4.39/2.10 4.39/2.10 The start-symbols are:[evalwhile2start_3] 4.39/2.10 4.39/2.10 4.39/2.10 ---------------------------------------- 4.39/2.10 4.39/2.10 (1) Koat Proof (FINISHED) 4.39/2.10 YES(?, 9*ar_1 + 2*ar_1^2 + 13) 4.39/2.10 4.39/2.10 4.39/2.10 4.39/2.10 Initial complexity problem: 4.39/2.10 4.39/2.10 1: T: 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.39/2.10 4.39/2.10 start location: koat_start 4.39/2.10 4.39/2.10 leaf cost: 0 4.39/2.10 4.39/2.10 4.39/2.10 4.39/2.10 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.39/2.10 4.39/2.10 2: T: 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.39/2.10 4.39/2.10 start location: koat_start 4.39/2.10 4.39/2.10 leaf cost: 0 4.39/2.10 4.39/2.10 4.39/2.10 4.39/2.10 A polynomial rank function with 4.39/2.10 4.39/2.10 Pol(evalwhile2start) = 2 4.39/2.10 4.39/2.10 Pol(evalwhile2entryin) = 2 4.39/2.10 4.39/2.10 Pol(evalwhile2bb4in) = 2 4.39/2.10 4.39/2.10 Pol(evalwhile2bb2in) = 2 4.39/2.10 4.39/2.10 Pol(evalwhile2returnin) = 1 4.39/2.10 4.39/2.10 Pol(evalwhile2bb1in) = 2 4.39/2.10 4.39/2.10 Pol(evalwhile2bb3in) = 2 4.39/2.10 4.39/2.10 Pol(evalwhile2stop) = 0 4.39/2.10 4.39/2.10 Pol(koat_start) = 2 4.39/2.10 4.39/2.10 orients all transitions weakly and the transitions 4.39/2.10 4.39/2.10 evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.10 4.39/2.10 strictly and produces the following problem: 4.39/2.10 4.39/2.10 3: T: 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: 2, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 2, Cost: 1) evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.39/2.10 4.39/2.10 start location: koat_start 4.39/2.10 4.39/2.10 leaf cost: 0 4.39/2.10 4.39/2.10 4.39/2.10 4.39/2.10 A polynomial rank function with 4.39/2.10 4.39/2.10 Pol(evalwhile2start) = V_2 + 1 4.39/2.10 4.39/2.10 Pol(evalwhile2entryin) = V_2 + 1 4.39/2.10 4.39/2.10 Pol(evalwhile2bb4in) = V_1 + 1 4.39/2.10 4.39/2.10 Pol(evalwhile2bb2in) = V_1 4.39/2.10 4.39/2.10 Pol(evalwhile2returnin) = V_1 4.39/2.10 4.39/2.10 Pol(evalwhile2bb1in) = V_1 4.39/2.10 4.39/2.10 Pol(evalwhile2bb3in) = V_1 4.39/2.10 4.39/2.10 Pol(evalwhile2stop) = V_1 4.39/2.10 4.39/2.10 Pol(koat_start) = V_2 + 1 4.39/2.10 4.39/2.10 orients all transitions weakly and the transition 4.39/2.10 4.39/2.10 evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.10 4.39/2.10 strictly and produces the following problem: 4.39/2.10 4.39/2.10 4: T: 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ar_1 + 1, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: 2, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 2, Cost: 1) evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.39/2.10 4.39/2.10 start location: koat_start 4.39/2.10 4.39/2.10 leaf cost: 0 4.39/2.10 4.39/2.10 4.39/2.10 4.39/2.10 A polynomial rank function with 4.39/2.10 4.39/2.10 Pol(evalwhile2bb3in) = 1 4.39/2.10 4.39/2.10 Pol(evalwhile2bb4in) = 0 4.39/2.10 4.39/2.10 Pol(evalwhile2bb2in) = 2 4.39/2.10 4.39/2.10 Pol(evalwhile2bb1in) = 2 4.39/2.10 4.39/2.10 and size complexities 4.39/2.10 4.39/2.10 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.39/2.10 4.39/2.10 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.39/2.10 4.39/2.10 S("evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2))", 0-0) = ? 4.39/2.10 4.39/2.10 S("evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2))", 0-2) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2))", 0-0) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2))", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2))", 0-2) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1))", 0-0) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1))", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1))", 0-2) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-0) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-2) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-0) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-2) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-0) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-2) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ]", 0-0) = ? 4.39/2.10 4.39/2.10 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ]", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ]", 0-2) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2))", 0-0) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2))", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2))", 0-2) = ar_2 4.39/2.10 4.39/2.10 S("evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.39/2.10 4.39/2.10 S("evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.39/2.10 4.39/2.10 S("evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.39/2.10 4.39/2.10 orients the transitions 4.39/2.10 4.39/2.10 evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.10 4.39/2.10 evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.10 4.39/2.10 evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.10 4.39/2.10 weakly and the transitions 4.39/2.10 4.39/2.10 evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.10 4.39/2.10 strictly and produces the following problem: 4.39/2.10 4.39/2.10 5: T: 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 1) evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: ar_1 + 1, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: 2, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.10 4.39/2.10 (Comp: 2*ar_1 + 2, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.10 4.39/2.10 (Comp: ?, Cost: 1) evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.10 4.39/2.10 (Comp: 2*ar_1 + 2, Cost: 1) evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 2, Cost: 1) evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.10 4.39/2.10 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.39/2.10 4.39/2.10 start location: koat_start 4.39/2.11 4.39/2.11 leaf cost: 0 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 A polynomial rank function with 4.39/2.11 4.39/2.11 Pol(evalwhile2bb2in) = V_3 + 1 4.39/2.11 4.39/2.11 Pol(evalwhile2bb1in) = V_3 4.39/2.11 4.39/2.11 and size complexities 4.39/2.11 4.39/2.11 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 4.39/2.11 4.39/2.11 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 4.39/2.11 4.39/2.11 S("evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2))", 0-0) = 3*ar_1 + 162 4.39/2.11 4.39/2.11 S("evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2))", 0-2) = ? 4.39/2.11 4.39/2.11 S("evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2))", 0-0) = 3*ar_1 + 18 4.39/2.11 4.39/2.11 S("evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2))", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2))", 0-2) = ? 4.39/2.11 4.39/2.11 S("evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1))", 0-0) = 3*ar_1 + 18 4.39/2.11 4.39/2.11 S("evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1))", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1))", 0-2) = ? 4.39/2.11 4.39/2.11 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-0) = 3*ar_1 + 18 4.39/2.11 4.39/2.11 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-2) = ? 4.39/2.11 4.39/2.11 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-0) = 3*ar_1 + 18 4.39/2.11 4.39/2.11 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ]", 0-2) = ? 4.39/2.11 4.39/2.11 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-0) = 3*ar_1 + 54 4.39/2.11 4.39/2.11 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-2) = ? 4.39/2.11 4.39/2.11 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ]", 0-0) = 3*ar_1 + 18 4.39/2.11 4.39/2.11 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ]", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ]", 0-2) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2))", 0-0) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2))", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2))", 0-2) = ar_2 4.39/2.11 4.39/2.11 S("evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2))", 0-0) = ar_0 4.39/2.11 4.39/2.11 S("evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2))", 0-1) = ar_1 4.39/2.11 4.39/2.11 S("evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2))", 0-2) = ar_2 4.39/2.11 4.39/2.11 orients the transitions 4.39/2.11 4.39/2.11 evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.11 4.39/2.11 evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.11 4.39/2.11 weakly and the transition 4.39/2.11 4.39/2.11 evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.11 4.39/2.11 strictly and produces the following problem: 4.39/2.11 4.39/2.11 6: T: 4.39/2.11 4.39/2.11 (Comp: 1, Cost: 1) evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: 1, Cost: 1) evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: ar_1 + 1, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.11 4.39/2.11 (Comp: 2, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.11 4.39/2.11 (Comp: ar_1^2 + 2*ar_1 + 1, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.11 4.39/2.11 (Comp: 2*ar_1 + 2, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.11 4.39/2.11 (Comp: ?, Cost: 1) evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.11 4.39/2.11 (Comp: 2*ar_1 + 2, Cost: 1) evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: 2, Cost: 1) evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.39/2.11 4.39/2.11 start location: koat_start 4.39/2.11 4.39/2.11 leaf cost: 0 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Repeatedly propagating knowledge in problem 6 produces the following problem: 4.39/2.11 4.39/2.11 7: T: 4.39/2.11 4.39/2.11 (Comp: 1, Cost: 1) evalwhile2start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2entryin(ar_0, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: 1, Cost: 1) evalwhile2entryin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_1, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: ar_1 + 1, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_1)) [ ar_0 >= 1 ] 4.39/2.11 4.39/2.11 (Comp: 2, Cost: 1) evalwhile2bb4in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2returnin(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 4.39/2.11 4.39/2.11 (Comp: ar_1^2 + 2*ar_1 + 1, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb1in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.39/2.11 4.39/2.11 (Comp: 2*ar_1 + 2, Cost: 1) evalwhile2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.39/2.11 4.39/2.11 (Comp: ar_1^2 + 2*ar_1 + 1, Cost: 1) evalwhile2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb2in(ar_0, ar_1, ar_2 - 1)) 4.39/2.11 4.39/2.11 (Comp: 2*ar_1 + 2, Cost: 1) evalwhile2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalwhile2bb4in(ar_0 - 1, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: 2, Cost: 1) evalwhile2returnin(ar_0, ar_1, ar_2) -> Com_1(evalwhile2stop(ar_0, ar_1, ar_2)) 4.39/2.11 4.39/2.11 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalwhile2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.39/2.11 4.39/2.11 start location: koat_start 4.39/2.11 4.39/2.11 leaf cost: 0 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Complexity upper bound 9*ar_1 + 2*ar_1^2 + 13 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Time: 0.089 sec (SMT: 0.078 sec) 4.39/2.11 4.39/2.11 4.39/2.11 ---------------------------------------- 4.39/2.11 4.39/2.11 (2) 4.39/2.11 BOUNDS(1, n^2) 4.39/2.11 4.39/2.11 ---------------------------------------- 4.39/2.11 4.39/2.11 (3) Loat Proof (FINISHED) 4.39/2.11 4.39/2.11 4.39/2.11 ### Pre-processing the ITS problem ### 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Initial linear ITS problem 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 0: evalwhile2start -> evalwhile2entryin : [], cost: 1 4.39/2.11 4.39/2.11 1: evalwhile2entryin -> evalwhile2bb4in : A'=B, [], cost: 1 4.39/2.11 4.39/2.11 2: evalwhile2bb4in -> evalwhile2bb2in : C'=B, [ A>=1 ], cost: 1 4.39/2.11 4.39/2.11 3: evalwhile2bb4in -> evalwhile2returnin : [ 0>=A ], cost: 1 4.39/2.11 4.39/2.11 4: evalwhile2bb2in -> evalwhile2bb1in : [ C>=1 ], cost: 1 4.39/2.11 4.39/2.11 5: evalwhile2bb2in -> evalwhile2bb3in : [ 0>=C ], cost: 1 4.39/2.11 4.39/2.11 6: evalwhile2bb1in -> evalwhile2bb2in : C'=-1+C, [], cost: 1 4.39/2.11 4.39/2.11 7: evalwhile2bb3in -> evalwhile2bb4in : A'=-1+A, [], cost: 1 4.39/2.11 4.39/2.11 8: evalwhile2returnin -> evalwhile2stop : [], cost: 1 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Removed unreachable and leaf rules: 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 0: evalwhile2start -> evalwhile2entryin : [], cost: 1 4.39/2.11 4.39/2.11 1: evalwhile2entryin -> evalwhile2bb4in : A'=B, [], cost: 1 4.39/2.11 4.39/2.11 2: evalwhile2bb4in -> evalwhile2bb2in : C'=B, [ A>=1 ], cost: 1 4.39/2.11 4.39/2.11 4: evalwhile2bb2in -> evalwhile2bb1in : [ C>=1 ], cost: 1 4.39/2.11 4.39/2.11 5: evalwhile2bb2in -> evalwhile2bb3in : [ 0>=C ], cost: 1 4.39/2.11 4.39/2.11 6: evalwhile2bb1in -> evalwhile2bb2in : C'=-1+C, [], cost: 1 4.39/2.11 4.39/2.11 7: evalwhile2bb3in -> evalwhile2bb4in : A'=-1+A, [], cost: 1 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 ### Simplification by acceleration and chaining ### 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Eliminated locations (on linear paths): 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 9: evalwhile2start -> evalwhile2bb4in : A'=B, [], cost: 2 4.39/2.11 4.39/2.11 2: evalwhile2bb4in -> evalwhile2bb2in : C'=B, [ A>=1 ], cost: 1 4.39/2.11 4.39/2.11 10: evalwhile2bb2in -> evalwhile2bb2in : C'=-1+C, [ C>=1 ], cost: 2 4.39/2.11 4.39/2.11 11: evalwhile2bb2in -> evalwhile2bb4in : A'=-1+A, [ 0>=C ], cost: 2 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Accelerating simple loops of location 3. 4.39/2.11 4.39/2.11 Accelerating the following rules: 4.39/2.11 4.39/2.11 10: evalwhile2bb2in -> evalwhile2bb2in : C'=-1+C, [ C>=1 ], cost: 2 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Accelerated rule 10 with metering function C, yielding the new rule 12. 4.39/2.11 4.39/2.11 Removing the simple loops: 10. 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Accelerated all simple loops using metering functions (where possible): 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 9: evalwhile2start -> evalwhile2bb4in : A'=B, [], cost: 2 4.39/2.11 4.39/2.11 2: evalwhile2bb4in -> evalwhile2bb2in : C'=B, [ A>=1 ], cost: 1 4.39/2.11 4.39/2.11 11: evalwhile2bb2in -> evalwhile2bb4in : A'=-1+A, [ 0>=C ], cost: 2 4.39/2.11 4.39/2.11 12: evalwhile2bb2in -> evalwhile2bb2in : C'=0, [ C>=1 ], cost: 2*C 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Chained accelerated rules (with incoming rules): 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 9: evalwhile2start -> evalwhile2bb4in : A'=B, [], cost: 2 4.39/2.11 4.39/2.11 2: evalwhile2bb4in -> evalwhile2bb2in : C'=B, [ A>=1 ], cost: 1 4.39/2.11 4.39/2.11 13: evalwhile2bb4in -> evalwhile2bb2in : C'=0, [ A>=1 && B>=1 ], cost: 1+2*B 4.39/2.11 4.39/2.11 11: evalwhile2bb2in -> evalwhile2bb4in : A'=-1+A, [ 0>=C ], cost: 2 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Eliminated locations (on tree-shaped paths): 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 9: evalwhile2start -> evalwhile2bb4in : A'=B, [], cost: 2 4.39/2.11 4.39/2.11 14: evalwhile2bb4in -> evalwhile2bb4in : A'=-1+A, C'=B, [ A>=1 && 0>=B ], cost: 3 4.39/2.11 4.39/2.11 15: evalwhile2bb4in -> evalwhile2bb4in : A'=-1+A, C'=0, [ A>=1 && B>=1 ], cost: 3+2*B 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Accelerating simple loops of location 2. 4.39/2.11 4.39/2.11 Accelerating the following rules: 4.39/2.11 4.39/2.11 14: evalwhile2bb4in -> evalwhile2bb4in : A'=-1+A, C'=B, [ A>=1 && 0>=B ], cost: 3 4.39/2.11 4.39/2.11 15: evalwhile2bb4in -> evalwhile2bb4in : A'=-1+A, C'=0, [ A>=1 && B>=1 ], cost: 3+2*B 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Accelerated rule 14 with metering function A, yielding the new rule 16. 4.39/2.11 4.39/2.11 Accelerated rule 15 with metering function A, yielding the new rule 17. 4.39/2.11 4.39/2.11 Removing the simple loops: 14 15. 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Accelerated all simple loops using metering functions (where possible): 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 9: evalwhile2start -> evalwhile2bb4in : A'=B, [], cost: 2 4.39/2.11 4.39/2.11 16: evalwhile2bb4in -> evalwhile2bb4in : A'=0, C'=B, [ A>=1 && 0>=B ], cost: 3*A 4.39/2.11 4.39/2.11 17: evalwhile2bb4in -> evalwhile2bb4in : A'=0, C'=0, [ A>=1 && B>=1 ], cost: 3*A+2*A*B 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Chained accelerated rules (with incoming rules): 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 9: evalwhile2start -> evalwhile2bb4in : A'=B, [], cost: 2 4.39/2.11 4.39/2.11 18: evalwhile2start -> evalwhile2bb4in : A'=0, C'=0, [ B>=1 ], cost: 2+2*B^2+3*B 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Removed unreachable locations (and leaf rules with constant cost): 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 18: evalwhile2start -> evalwhile2bb4in : A'=0, C'=0, [ B>=1 ], cost: 2+2*B^2+3*B 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 ### Computing asymptotic complexity ### 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Fully simplified ITS problem 4.39/2.11 4.39/2.11 Start location: evalwhile2start 4.39/2.11 4.39/2.11 18: evalwhile2start -> evalwhile2bb4in : A'=0, C'=0, [ B>=1 ], cost: 2+2*B^2+3*B 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Computing asymptotic complexity for rule 18 4.39/2.11 4.39/2.11 Solved the limit problem by the following transformations: 4.39/2.11 4.39/2.11 Created initial limit problem: 4.39/2.11 4.39/2.11 2+2*B^2+3*B (+), B (+/+!) [not solved] 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 removing all constraints (solved by SMT) 4.39/2.11 4.39/2.11 resulting limit problem: [solved] 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 applying transformation rule (C) using substitution {B==n} 4.39/2.11 4.39/2.11 resulting limit problem: 4.39/2.11 4.39/2.11 [solved] 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Solution: 4.39/2.11 4.39/2.11 B / n 4.39/2.11 4.39/2.11 Resulting cost 2+2*n^2+3*n has complexity: Poly(n^2) 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Found new complexity Poly(n^2). 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 Obtained the following overall complexity (w.r.t. the length of the input n): 4.39/2.11 4.39/2.11 Complexity: Poly(n^2) 4.39/2.11 4.39/2.11 Cpx degree: 2 4.39/2.11 4.39/2.11 Solved cost: 2+2*n^2+3*n 4.39/2.11 4.39/2.11 Rule cost: 2+2*B^2+3*B 4.39/2.11 4.39/2.11 Rule guard: [ B>=1 ] 4.39/2.11 4.39/2.11 4.39/2.11 4.39/2.11 WORST_CASE(Omega(n^2),?) 4.39/2.11 4.39/2.11 4.39/2.11 ---------------------------------------- 4.39/2.11 4.39/2.11 (4) 4.39/2.11 BOUNDS(n^2, INF) 4.46/2.12 EOF