4.61/2.24 WORST_CASE(Omega(n^1), O(n^1)) 4.61/2.25 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.61/2.25 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.61/2.25 4.61/2.25 4.61/2.25 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.61/2.25 4.61/2.25 (0) CpxIntTrs 4.61/2.25 (1) Koat Proof [FINISHED, 216 ms] 4.61/2.25 (2) BOUNDS(1, n^1) 4.61/2.25 (3) Loat Proof [FINISHED, 533 ms] 4.61/2.25 (4) BOUNDS(n^1, INF) 4.61/2.25 4.61/2.25 4.61/2.25 ---------------------------------------- 4.61/2.25 4.61/2.25 (0) 4.61/2.25 Obligation: 4.61/2.25 Complexity Int TRS consisting of the following rules: 4.61/2.25 evalSimpleMultiplestart(A, B, C, D) -> Com_1(evalSimpleMultipleentryin(A, B, C, D)) :|: TRUE 4.61/2.25 evalSimpleMultipleentryin(A, B, C, D) -> Com_1(evalSimpleMultiplebb3in(0, 0, C, D)) :|: TRUE 4.61/2.25 evalSimpleMultiplebb3in(A, B, C, D) -> Com_1(evalSimpleMultiplebbin(A, B, C, D)) :|: C >= B + 1 4.61/2.25 evalSimpleMultiplebb3in(A, B, C, D) -> Com_1(evalSimpleMultiplereturnin(A, B, C, D)) :|: B >= C 4.61/2.25 evalSimpleMultiplebbin(A, B, C, D) -> Com_1(evalSimpleMultiplebb1in(A, B, C, D)) :|: D >= A + 1 4.61/2.25 evalSimpleMultiplebbin(A, B, C, D) -> Com_1(evalSimpleMultiplebb2in(A, B, C, D)) :|: A >= D 4.61/2.26 evalSimpleMultiplebb1in(A, B, C, D) -> Com_1(evalSimpleMultiplebb3in(A + 1, B, C, D)) :|: TRUE 4.61/2.26 evalSimpleMultiplebb2in(A, B, C, D) -> Com_1(evalSimpleMultiplebb3in(A, B + 1, C, D)) :|: TRUE 4.61/2.26 evalSimpleMultiplereturnin(A, B, C, D) -> Com_1(evalSimpleMultiplestop(A, B, C, D)) :|: TRUE 4.61/2.26 4.61/2.26 The start-symbols are:[evalSimpleMultiplestart_4] 4.61/2.26 4.61/2.26 4.61/2.26 ---------------------------------------- 4.61/2.26 4.61/2.26 (1) Koat Proof (FINISHED) 4.61/2.26 YES(?, 6*ar_2 + 3*ar_3 + 10) 4.61/2.26 4.61/2.26 4.61/2.26 4.61/2.26 Initial complexity problem: 4.61/2.26 4.61/2.26 1: T: 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.61/2.26 4.61/2.26 (Comp: ?, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) 4.61/2.26 4.61/2.26 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.26 4.61/2.26 start location: koat_start 4.61/2.26 4.61/2.26 leaf cost: 0 4.61/2.26 4.61/2.26 4.61/2.26 4.61/2.26 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.61/2.26 4.61/2.26 2: T: 4.61/2.26 4.61/2.26 (Comp: 1, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.27 4.61/2.27 start location: koat_start 4.61/2.27 4.61/2.27 leaf cost: 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 A polynomial rank function with 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplestart) = 2 4.61/2.27 4.61/2.27 Pol(evalSimpleMultipleentryin) = 2 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb3in) = 2 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebbin) = 2 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplereturnin) = 1 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb1in) = 2 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb2in) = 2 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplestop) = 0 4.61/2.27 4.61/2.27 Pol(koat_start) = 2 4.61/2.27 4.61/2.27 orients all transitions weakly and the transitions 4.61/2.27 4.61/2.27 evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 strictly and produces the following problem: 4.61/2.27 4.61/2.27 3: T: 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.27 4.61/2.27 start location: koat_start 4.61/2.27 4.61/2.27 leaf cost: 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 A polynomial rank function with 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplestart) = V_4 + 1 4.61/2.27 4.61/2.27 Pol(evalSimpleMultipleentryin) = V_4 + 1 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb3in) = -V_1 + V_4 + 1 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebbin) = -V_1 + V_4 + 1 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplereturnin) = -V_1 + V_4 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb1in) = -V_1 + V_4 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb2in) = -V_1 + V_4 + 1 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplestop) = -V_1 + V_4 4.61/2.27 4.61/2.27 Pol(koat_start) = V_4 + 1 4.61/2.27 4.61/2.27 orients all transitions weakly and the transition 4.61/2.27 4.61/2.27 evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 strictly and produces the following problem: 4.61/2.27 4.61/2.27 4: T: 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.27 4.61/2.27 start location: koat_start 4.61/2.27 4.61/2.27 leaf cost: 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Repeatedly propagating knowledge in problem 4 produces the following problem: 4.61/2.27 4.61/2.27 5: T: 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.27 4.61/2.27 start location: koat_start 4.61/2.27 4.61/2.27 leaf cost: 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Applied AI with 'oct' on problem 5 to obtain the following invariants: 4.61/2.27 4.61/2.27 For symbol evalSimpleMultiplebb1in: X_4 - 1 >= 0 /\ X_3 + X_4 - 2 >= 0 /\ X_2 + X_4 - 1 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_1 + X_4 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.61/2.27 4.61/2.27 For symbol evalSimpleMultiplebb2in: X_1 - X_4 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.61/2.27 4.61/2.27 For symbol evalSimpleMultiplebb3in: X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.61/2.27 4.61/2.27 For symbol evalSimpleMultiplebbin: X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.61/2.27 4.61/2.27 For symbol evalSimpleMultiplereturnin: X_2 - X_3 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 This yielded the following problem: 4.61/2.27 4.61/2.27 6: T: 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 start location: koat_start 4.61/2.27 4.61/2.27 leaf cost: 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 A polynomial rank function with 4.61/2.27 4.61/2.27 Pol(koat_start) = 2*V_3 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplestart) = 2*V_3 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplereturnin) = -2*V_2 + 2*V_3 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplestop) = -2*V_2 + 2*V_3 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb2in) = -2*V_2 + 2*V_3 - 1 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb3in) = -2*V_2 + 2*V_3 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebb1in) = -2*V_2 + 2*V_3 4.61/2.27 4.61/2.27 Pol(evalSimpleMultiplebbin) = -2*V_2 + 2*V_3 4.61/2.27 4.61/2.27 Pol(evalSimpleMultipleentryin) = 2*V_3 4.61/2.27 4.61/2.27 orients all transitions weakly and the transitions 4.61/2.27 4.61/2.27 evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 strictly and produces the following problem: 4.61/2.27 4.61/2.27 7: T: 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: 2*ar_2, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: 2*ar_2, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 start location: koat_start 4.61/2.27 4.61/2.27 leaf cost: 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Repeatedly propagating knowledge in problem 7 produces the following problem: 4.61/2.27 4.61/2.27 8: T: 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplestop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: 2*ar_2, Cost: 1) evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.61/2.27 4.61/2.27 (Comp: 2*ar_2, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 1, Cost: 1) evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplereturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_2 ] 4.61/2.27 4.61/2.27 (Comp: ar_3 + 2*ar_2 + 2, Cost: 1) evalSimpleMultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, ar_2, ar_3)) 4.61/2.27 4.61/2.27 (Comp: 1, Cost: 1) evalSimpleMultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalSimpleMultipleentryin(ar_0, ar_1, ar_2, ar_3)) 4.61/2.27 4.61/2.27 start location: koat_start 4.61/2.27 4.61/2.27 leaf cost: 0 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Complexity upper bound 6*ar_2 + 3*ar_3 + 10 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Time: 0.254 sec (SMT: 0.223 sec) 4.61/2.27 4.61/2.27 4.61/2.27 ---------------------------------------- 4.61/2.27 4.61/2.27 (2) 4.61/2.27 BOUNDS(1, n^1) 4.61/2.27 4.61/2.27 ---------------------------------------- 4.61/2.27 4.61/2.27 (3) Loat Proof (FINISHED) 4.61/2.27 4.61/2.27 4.61/2.27 ### Pre-processing the ITS problem ### 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Initial linear ITS problem 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 0: evalSimpleMultiplestart -> evalSimpleMultipleentryin : [], cost: 1 4.61/2.27 4.61/2.27 1: evalSimpleMultipleentryin -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 1 4.61/2.27 4.61/2.27 2: evalSimpleMultiplebb3in -> evalSimpleMultiplebbin : [ C>=1+B ], cost: 1 4.61/2.27 4.61/2.27 3: evalSimpleMultiplebb3in -> evalSimpleMultiplereturnin : [ B>=C ], cost: 1 4.61/2.27 4.61/2.27 4: evalSimpleMultiplebbin -> evalSimpleMultiplebb1in : [ D>=1+A ], cost: 1 4.61/2.27 4.61/2.27 5: evalSimpleMultiplebbin -> evalSimpleMultiplebb2in : [ A>=D ], cost: 1 4.61/2.27 4.61/2.27 6: evalSimpleMultiplebb1in -> evalSimpleMultiplebb3in : A'=1+A, [], cost: 1 4.61/2.27 4.61/2.27 7: evalSimpleMultiplebb2in -> evalSimpleMultiplebb3in : B'=1+B, [], cost: 1 4.61/2.27 4.61/2.27 8: evalSimpleMultiplereturnin -> evalSimpleMultiplestop : [], cost: 1 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Removed unreachable and leaf rules: 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 0: evalSimpleMultiplestart -> evalSimpleMultipleentryin : [], cost: 1 4.61/2.27 4.61/2.27 1: evalSimpleMultipleentryin -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 1 4.61/2.27 4.61/2.27 2: evalSimpleMultiplebb3in -> evalSimpleMultiplebbin : [ C>=1+B ], cost: 1 4.61/2.27 4.61/2.27 4: evalSimpleMultiplebbin -> evalSimpleMultiplebb1in : [ D>=1+A ], cost: 1 4.61/2.27 4.61/2.27 5: evalSimpleMultiplebbin -> evalSimpleMultiplebb2in : [ A>=D ], cost: 1 4.61/2.27 4.61/2.27 6: evalSimpleMultiplebb1in -> evalSimpleMultiplebb3in : A'=1+A, [], cost: 1 4.61/2.27 4.61/2.27 7: evalSimpleMultiplebb2in -> evalSimpleMultiplebb3in : B'=1+B, [], cost: 1 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 ### Simplification by acceleration and chaining ### 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Eliminated locations (on linear paths): 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 4.61/2.27 4.61/2.27 2: evalSimpleMultiplebb3in -> evalSimpleMultiplebbin : [ C>=1+B ], cost: 1 4.61/2.27 4.61/2.27 10: evalSimpleMultiplebbin -> evalSimpleMultiplebb3in : A'=1+A, [ D>=1+A ], cost: 2 4.61/2.27 4.61/2.27 11: evalSimpleMultiplebbin -> evalSimpleMultiplebb3in : B'=1+B, [ A>=D ], cost: 2 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Eliminated locations (on tree-shaped paths): 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 4.61/2.27 4.61/2.27 12: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : A'=1+A, [ C>=1+B && D>=1+A ], cost: 3 4.61/2.27 4.61/2.27 13: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : B'=1+B, [ C>=1+B && A>=D ], cost: 3 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Accelerating simple loops of location 2. 4.61/2.27 4.61/2.27 Accelerating the following rules: 4.61/2.27 4.61/2.27 12: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : A'=1+A, [ C>=1+B && D>=1+A ], cost: 3 4.61/2.27 4.61/2.27 13: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : B'=1+B, [ C>=1+B && A>=D ], cost: 3 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Accelerated rule 12 with metering function D-A, yielding the new rule 14. 4.61/2.27 4.61/2.27 Accelerated rule 13 with metering function C-B, yielding the new rule 15. 4.61/2.27 4.61/2.27 Removing the simple loops: 12 13. 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Accelerated all simple loops using metering functions (where possible): 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 4.61/2.27 4.61/2.27 14: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : A'=D, [ C>=1+B && D>=1+A ], cost: 3*D-3*A 4.61/2.27 4.61/2.27 15: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : B'=C, [ C>=1+B && A>=D ], cost: 3*C-3*B 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Chained accelerated rules (with incoming rules): 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 4.61/2.27 4.61/2.27 16: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 4.61/2.27 4.61/2.27 17: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Removed unreachable locations (and leaf rules with constant cost): 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 16: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 4.61/2.27 4.61/2.27 17: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 ### Computing asymptotic complexity ### 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Fully simplified ITS problem 4.61/2.27 4.61/2.27 Start location: evalSimpleMultiplestart 4.61/2.27 4.61/2.27 16: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 4.61/2.27 4.61/2.27 17: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Computing asymptotic complexity for rule 16 4.61/2.27 4.61/2.27 Solved the limit problem by the following transformations: 4.61/2.27 4.61/2.27 Created initial limit problem: 4.61/2.27 4.61/2.27 C (+/+!), D (+/+!), 2+3*D (+) [not solved] 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 removing all constraints (solved by SMT) 4.61/2.27 4.61/2.27 resulting limit problem: [solved] 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 applying transformation rule (C) using substitution {C==1,D==n} 4.61/2.27 4.61/2.27 resulting limit problem: 4.61/2.27 4.61/2.27 [solved] 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Solution: 4.61/2.27 4.61/2.27 C / 1 4.61/2.27 4.61/2.27 D / n 4.61/2.27 4.61/2.27 Resulting cost 2+3*n has complexity: Poly(n^1) 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Found new complexity Poly(n^1). 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 Obtained the following overall complexity (w.r.t. the length of the input n): 4.61/2.27 4.61/2.27 Complexity: Poly(n^1) 4.61/2.27 4.61/2.27 Cpx degree: 1 4.61/2.27 4.61/2.27 Solved cost: 2+3*n 4.61/2.27 4.61/2.27 Rule cost: 2+3*D 4.61/2.27 4.61/2.27 Rule guard: [ C>=1 && D>=1 ] 4.61/2.27 4.61/2.27 4.61/2.27 4.61/2.27 WORST_CASE(Omega(n^1),?) 4.61/2.27 4.61/2.27 4.61/2.27 ---------------------------------------- 4.61/2.27 4.61/2.27 (4) 4.61/2.27 BOUNDS(n^1, INF) 4.61/2.28 EOF