4.81/2.39 WORST_CASE(Omega(n^1), O(n^1)) 4.97/2.40 proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat 4.97/2.40 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.97/2.40 4.97/2.40 4.97/2.40 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.97/2.40 4.97/2.40 (0) CpxIntTrs 4.97/2.40 (1) Koat Proof [FINISHED, 107 ms] 4.97/2.40 (2) BOUNDS(1, n^1) 4.97/2.40 (3) Loat Proof [FINISHED, 701 ms] 4.97/2.40 (4) BOUNDS(n^1, INF) 4.97/2.40 4.97/2.40 4.97/2.40 ---------------------------------------- 4.97/2.40 4.97/2.40 (0) 4.97/2.40 Obligation: 4.97/2.40 Complexity Int TRS consisting of the following rules: 4.97/2.40 evalNestedSinglestart(A, B, C) -> Com_1(evalNestedSingleentryin(A, B, C)) :|: TRUE 4.97/2.40 evalNestedSingleentryin(A, B, C) -> Com_1(evalNestedSinglebb5in(0, B, C)) :|: TRUE 4.97/2.40 evalNestedSinglebb5in(A, B, C) -> Com_1(evalNestedSinglebb2in(A, B, A)) :|: B >= A + 1 4.97/2.40 evalNestedSinglebb5in(A, B, C) -> Com_1(evalNestedSinglereturnin(A, B, C)) :|: A >= B 4.97/2.40 evalNestedSinglebb2in(A, B, C) -> Com_1(evalNestedSinglebb4in(A, B, C)) :|: C >= B 4.97/2.40 evalNestedSinglebb2in(A, B, C) -> Com_1(evalNestedSinglebb3in(A, B, C)) :|: B >= C + 1 4.97/2.40 evalNestedSinglebb3in(A, B, C) -> Com_1(evalNestedSinglebb1in(A, B, C)) :|: 0 >= D + 1 4.97/2.40 evalNestedSinglebb3in(A, B, C) -> Com_1(evalNestedSinglebb1in(A, B, C)) :|: D >= 1 4.97/2.40 evalNestedSinglebb3in(A, B, C) -> Com_1(evalNestedSinglebb4in(A, B, C)) :|: TRUE 4.97/2.40 evalNestedSinglebb1in(A, B, C) -> Com_1(evalNestedSinglebb2in(A, B, C + 1)) :|: TRUE 4.97/2.40 evalNestedSinglebb4in(A, B, C) -> Com_1(evalNestedSinglebb5in(C + 1, B, C)) :|: TRUE 4.97/2.40 evalNestedSinglereturnin(A, B, C) -> Com_1(evalNestedSinglestop(A, B, C)) :|: TRUE 4.97/2.40 4.97/2.40 The start-symbols are:[evalNestedSinglestart_3] 4.97/2.40 4.97/2.40 4.97/2.40 ---------------------------------------- 4.97/2.40 4.97/2.40 (1) Koat Proof (FINISHED) 4.97/2.40 YES(?, 24*ar_1 + 30) 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Initial complexity problem: 4.97/2.40 4.97/2.40 1: T: 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglestart(ar_0, ar_1, ar_2) -> Com_1(evalNestedSingleentryin(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSingleentryin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglereturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb3in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ 0 >= d + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ d >= 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb1in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_2 + 1)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb4in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(ar_2 + 1, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglereturnin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestop(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.97/2.40 4.97/2.40 start location: koat_start 4.97/2.40 4.97/2.40 leaf cost: 0 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.97/2.40 4.97/2.40 2: T: 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSinglestart(ar_0, ar_1, ar_2) -> Com_1(evalNestedSingleentryin(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSingleentryin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglereturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb3in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ 0 >= d + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ d >= 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb1in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_2 + 1)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb4in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(ar_2 + 1, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglereturnin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestop(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.97/2.40 4.97/2.40 start location: koat_start 4.97/2.40 4.97/2.40 leaf cost: 0 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 A polynomial rank function with 4.97/2.40 4.97/2.40 Pol(evalNestedSinglestart) = 2 4.97/2.40 4.97/2.40 Pol(evalNestedSingleentryin) = 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb5in) = 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb2in) = 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglereturnin) = 1 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb4in) = 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb3in) = 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb1in) = 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglestop) = 0 4.97/2.40 4.97/2.40 Pol(koat_start) = 2 4.97/2.40 4.97/2.40 orients all transitions weakly and the transitions 4.97/2.40 4.97/2.40 evalNestedSinglereturnin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestop(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglereturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 ] 4.97/2.40 4.97/2.40 strictly and produces the following problem: 4.97/2.40 4.97/2.40 3: T: 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSinglestart(ar_0, ar_1, ar_2) -> Com_1(evalNestedSingleentryin(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSingleentryin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 + 1 ] 4.97/2.40 4.97/2.40 (Comp: 2, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglereturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb3in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ 0 >= d + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ d >= 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb1in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_2 + 1)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb4in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(ar_2 + 1, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 2, Cost: 1) evalNestedSinglereturnin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestop(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.97/2.40 4.97/2.40 start location: koat_start 4.97/2.40 4.97/2.40 leaf cost: 0 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 A polynomial rank function with 4.97/2.40 4.97/2.40 Pol(evalNestedSinglestart) = 2*V_2 + 2 4.97/2.40 4.97/2.40 Pol(evalNestedSingleentryin) = 2*V_2 + 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb5in) = -2*V_1 + 2*V_2 + 2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb2in) = 2*V_2 - 2*V_3 + 1 4.97/2.40 4.97/2.40 Pol(evalNestedSinglereturnin) = -2*V_1 + 2*V_2 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb4in) = 2*V_2 - 2*V_3 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb3in) = 2*V_2 - 2*V_3 4.97/2.40 4.97/2.40 Pol(evalNestedSinglebb1in) = 2*V_2 - 2*V_3 4.97/2.40 4.97/2.40 Pol(evalNestedSinglestop) = -2*V_1 + 2*V_2 4.97/2.40 4.97/2.40 Pol(koat_start) = 2*V_2 + 2 4.97/2.40 4.97/2.40 orients all transitions weakly and the transitions 4.97/2.40 4.97/2.40 evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 + 1 ] 4.97/2.40 4.97/2.40 evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb3in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 4.97/2.40 4.97/2.40 strictly and produces the following problem: 4.97/2.40 4.97/2.40 4: T: 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSinglestart(ar_0, ar_1, ar_2) -> Com_1(evalNestedSingleentryin(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSingleentryin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 2*ar_1 + 2, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 + 1 ] 4.97/2.40 4.97/2.40 (Comp: 2, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglereturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: 2*ar_1 + 2, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb3in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ 0 >= d + 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ d >= 1 ] 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb1in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_2 + 1)) 4.97/2.40 4.97/2.40 (Comp: ?, Cost: 1) evalNestedSinglebb4in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(ar_2 + 1, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 2, Cost: 1) evalNestedSinglereturnin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestop(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.97/2.40 4.97/2.40 start location: koat_start 4.97/2.40 4.97/2.40 leaf cost: 0 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Repeatedly propagating knowledge in problem 4 produces the following problem: 4.97/2.40 4.97/2.40 5: T: 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSinglestart(ar_0, ar_1, ar_2) -> Com_1(evalNestedSingleentryin(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 1) evalNestedSingleentryin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 2*ar_1 + 2, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_0)) [ ar_1 >= ar_0 + 1 ] 4.97/2.40 4.97/2.40 (Comp: 2, Cost: 1) evalNestedSinglebb5in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglereturnin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: 4*ar_1 + 4, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 4.97/2.40 4.97/2.40 (Comp: 2*ar_1 + 2, Cost: 1) evalNestedSinglebb2in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb3in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 4.97/2.40 4.97/2.40 (Comp: 2*ar_1 + 2, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ 0 >= d + 1 ] 4.97/2.40 4.97/2.40 (Comp: 2*ar_1 + 2, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb1in(ar_0, ar_1, ar_2)) [ d >= 1 ] 4.97/2.40 4.97/2.40 (Comp: 2*ar_1 + 2, Cost: 1) evalNestedSinglebb3in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb4in(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 4*ar_1 + 4, Cost: 1) evalNestedSinglebb1in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb2in(ar_0, ar_1, ar_2 + 1)) 4.97/2.40 4.97/2.40 (Comp: 6*ar_1 + 6, Cost: 1) evalNestedSinglebb4in(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglebb5in(ar_2 + 1, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 2, Cost: 1) evalNestedSinglereturnin(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestop(ar_0, ar_1, ar_2)) 4.97/2.40 4.97/2.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalNestedSinglestart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.97/2.40 4.97/2.40 start location: koat_start 4.97/2.40 4.97/2.40 leaf cost: 0 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Complexity upper bound 24*ar_1 + 30 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Time: 0.096 sec (SMT: 0.085 sec) 4.97/2.40 4.97/2.40 4.97/2.40 ---------------------------------------- 4.97/2.40 4.97/2.40 (2) 4.97/2.40 BOUNDS(1, n^1) 4.97/2.40 4.97/2.40 ---------------------------------------- 4.97/2.40 4.97/2.40 (3) Loat Proof (FINISHED) 4.97/2.40 4.97/2.40 4.97/2.40 ### Pre-processing the ITS problem ### 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Initial linear ITS problem 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 0: evalNestedSinglestart -> evalNestedSingleentryin : [], cost: 1 4.97/2.40 4.97/2.40 1: evalNestedSingleentryin -> evalNestedSinglebb5in : A'=0, [], cost: 1 4.97/2.40 4.97/2.40 2: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=A, [ B>=1+A ], cost: 1 4.97/2.40 4.97/2.40 3: evalNestedSinglebb5in -> evalNestedSinglereturnin : [ A>=B ], cost: 1 4.97/2.40 4.97/2.40 4: evalNestedSinglebb2in -> evalNestedSinglebb4in : [ C>=B ], cost: 1 4.97/2.40 4.97/2.40 5: evalNestedSinglebb2in -> evalNestedSinglebb3in : [ B>=1+C ], cost: 1 4.97/2.40 4.97/2.40 6: evalNestedSinglebb3in -> evalNestedSinglebb1in : [ 0>=1+free ], cost: 1 4.97/2.40 4.97/2.40 7: evalNestedSinglebb3in -> evalNestedSinglebb1in : [ free_1>=1 ], cost: 1 4.97/2.40 4.97/2.40 8: evalNestedSinglebb3in -> evalNestedSinglebb4in : [], cost: 1 4.97/2.40 4.97/2.40 9: evalNestedSinglebb1in -> evalNestedSinglebb2in : C'=1+C, [], cost: 1 4.97/2.40 4.97/2.40 10: evalNestedSinglebb4in -> evalNestedSinglebb5in : A'=1+C, [], cost: 1 4.97/2.40 4.97/2.40 11: evalNestedSinglereturnin -> evalNestedSinglestop : [], cost: 1 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Removed unreachable and leaf rules: 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 0: evalNestedSinglestart -> evalNestedSingleentryin : [], cost: 1 4.97/2.40 4.97/2.40 1: evalNestedSingleentryin -> evalNestedSinglebb5in : A'=0, [], cost: 1 4.97/2.40 4.97/2.40 2: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=A, [ B>=1+A ], cost: 1 4.97/2.40 4.97/2.40 4: evalNestedSinglebb2in -> evalNestedSinglebb4in : [ C>=B ], cost: 1 4.97/2.40 4.97/2.40 5: evalNestedSinglebb2in -> evalNestedSinglebb3in : [ B>=1+C ], cost: 1 4.97/2.40 4.97/2.40 6: evalNestedSinglebb3in -> evalNestedSinglebb1in : [ 0>=1+free ], cost: 1 4.97/2.40 4.97/2.40 7: evalNestedSinglebb3in -> evalNestedSinglebb1in : [ free_1>=1 ], cost: 1 4.97/2.40 4.97/2.40 8: evalNestedSinglebb3in -> evalNestedSinglebb4in : [], cost: 1 4.97/2.40 4.97/2.40 9: evalNestedSinglebb1in -> evalNestedSinglebb2in : C'=1+C, [], cost: 1 4.97/2.40 4.97/2.40 10: evalNestedSinglebb4in -> evalNestedSinglebb5in : A'=1+C, [], cost: 1 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Simplified all rules, resulting in: 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 0: evalNestedSinglestart -> evalNestedSingleentryin : [], cost: 1 4.97/2.40 4.97/2.40 1: evalNestedSingleentryin -> evalNestedSinglebb5in : A'=0, [], cost: 1 4.97/2.40 4.97/2.40 2: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=A, [ B>=1+A ], cost: 1 4.97/2.40 4.97/2.40 4: evalNestedSinglebb2in -> evalNestedSinglebb4in : [ C>=B ], cost: 1 4.97/2.40 4.97/2.40 5: evalNestedSinglebb2in -> evalNestedSinglebb3in : [ B>=1+C ], cost: 1 4.97/2.40 4.97/2.40 7: evalNestedSinglebb3in -> evalNestedSinglebb1in : [], cost: 1 4.97/2.40 4.97/2.40 8: evalNestedSinglebb3in -> evalNestedSinglebb4in : [], cost: 1 4.97/2.40 4.97/2.40 9: evalNestedSinglebb1in -> evalNestedSinglebb2in : C'=1+C, [], cost: 1 4.97/2.40 4.97/2.40 10: evalNestedSinglebb4in -> evalNestedSinglebb5in : A'=1+C, [], cost: 1 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 ### Simplification by acceleration and chaining ### 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Eliminated locations (on linear paths): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 12: evalNestedSinglestart -> evalNestedSinglebb5in : A'=0, [], cost: 2 4.97/2.40 4.97/2.40 2: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=A, [ B>=1+A ], cost: 1 4.97/2.40 4.97/2.40 4: evalNestedSinglebb2in -> evalNestedSinglebb4in : [ C>=B ], cost: 1 4.97/2.40 4.97/2.40 5: evalNestedSinglebb2in -> evalNestedSinglebb3in : [ B>=1+C ], cost: 1 4.97/2.40 4.97/2.40 8: evalNestedSinglebb3in -> evalNestedSinglebb4in : [], cost: 1 4.97/2.40 4.97/2.40 13: evalNestedSinglebb3in -> evalNestedSinglebb2in : C'=1+C, [], cost: 2 4.97/2.40 4.97/2.40 10: evalNestedSinglebb4in -> evalNestedSinglebb5in : A'=1+C, [], cost: 1 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Eliminated locations (on tree-shaped paths): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 12: evalNestedSinglestart -> evalNestedSinglebb5in : A'=0, [], cost: 2 4.97/2.40 4.97/2.40 2: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=A, [ B>=1+A ], cost: 1 4.97/2.40 4.97/2.40 15: evalNestedSinglebb2in -> evalNestedSinglebb2in : C'=1+C, [ B>=1+C ], cost: 3 4.97/2.40 4.97/2.40 16: evalNestedSinglebb2in -> evalNestedSinglebb5in : A'=1+C, [ C>=B ], cost: 2 4.97/2.40 4.97/2.40 17: evalNestedSinglebb2in -> evalNestedSinglebb5in : A'=1+C, [ B>=1+C ], cost: 3 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Accelerating simple loops of location 3. 4.97/2.40 4.97/2.40 Accelerating the following rules: 4.97/2.40 4.97/2.40 15: evalNestedSinglebb2in -> evalNestedSinglebb2in : C'=1+C, [ B>=1+C ], cost: 3 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Accelerated rule 15 with metering function -C+B, yielding the new rule 18. 4.97/2.40 4.97/2.40 Removing the simple loops: 15. 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Accelerated all simple loops using metering functions (where possible): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 12: evalNestedSinglestart -> evalNestedSinglebb5in : A'=0, [], cost: 2 4.97/2.40 4.97/2.40 2: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=A, [ B>=1+A ], cost: 1 4.97/2.40 4.97/2.40 16: evalNestedSinglebb2in -> evalNestedSinglebb5in : A'=1+C, [ C>=B ], cost: 2 4.97/2.40 4.97/2.40 17: evalNestedSinglebb2in -> evalNestedSinglebb5in : A'=1+C, [ B>=1+C ], cost: 3 4.97/2.40 4.97/2.40 18: evalNestedSinglebb2in -> evalNestedSinglebb2in : C'=B, [ B>=1+C ], cost: -3*C+3*B 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Chained accelerated rules (with incoming rules): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 12: evalNestedSinglestart -> evalNestedSinglebb5in : A'=0, [], cost: 2 4.97/2.40 4.97/2.40 2: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=A, [ B>=1+A ], cost: 1 4.97/2.40 4.97/2.40 19: evalNestedSinglebb5in -> evalNestedSinglebb2in : C'=B, [ B>=1+A ], cost: 1-3*A+3*B 4.97/2.40 4.97/2.40 16: evalNestedSinglebb2in -> evalNestedSinglebb5in : A'=1+C, [ C>=B ], cost: 2 4.97/2.40 4.97/2.40 17: evalNestedSinglebb2in -> evalNestedSinglebb5in : A'=1+C, [ B>=1+C ], cost: 3 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Eliminated locations (on tree-shaped paths): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 12: evalNestedSinglestart -> evalNestedSinglebb5in : A'=0, [], cost: 2 4.97/2.40 4.97/2.40 20: evalNestedSinglebb5in -> evalNestedSinglebb5in : A'=1+A, C'=A, [ B>=1+A ], cost: 4 4.97/2.40 4.97/2.40 21: evalNestedSinglebb5in -> evalNestedSinglebb5in : A'=1+B, C'=B, [ B>=1+A ], cost: 3-3*A+3*B 4.97/2.40 4.97/2.40 22: evalNestedSinglebb5in -> [10] : [ B>=1+A ], cost: 1-3*A+3*B 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Accelerating simple loops of location 2. 4.97/2.40 4.97/2.40 Accelerating the following rules: 4.97/2.40 4.97/2.40 20: evalNestedSinglebb5in -> evalNestedSinglebb5in : A'=1+A, C'=A, [ B>=1+A ], cost: 4 4.97/2.40 4.97/2.40 21: evalNestedSinglebb5in -> evalNestedSinglebb5in : A'=1+B, C'=B, [ B>=1+A ], cost: 3-3*A+3*B 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Accelerated rule 20 with metering function -A+B, yielding the new rule 23. 4.97/2.40 4.97/2.40 Found no metering function for rule 21. 4.97/2.40 4.97/2.40 Removing the simple loops: 20. 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Accelerated all simple loops using metering functions (where possible): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 12: evalNestedSinglestart -> evalNestedSinglebb5in : A'=0, [], cost: 2 4.97/2.40 4.97/2.40 21: evalNestedSinglebb5in -> evalNestedSinglebb5in : A'=1+B, C'=B, [ B>=1+A ], cost: 3-3*A+3*B 4.97/2.40 4.97/2.40 22: evalNestedSinglebb5in -> [10] : [ B>=1+A ], cost: 1-3*A+3*B 4.97/2.40 4.97/2.40 23: evalNestedSinglebb5in -> evalNestedSinglebb5in : A'=B, C'=-1+B, [ B>=1+A ], cost: -4*A+4*B 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Chained accelerated rules (with incoming rules): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 12: evalNestedSinglestart -> evalNestedSinglebb5in : A'=0, [], cost: 2 4.97/2.40 4.97/2.40 24: evalNestedSinglestart -> evalNestedSinglebb5in : A'=1+B, C'=B, [ B>=1 ], cost: 5+3*B 4.97/2.40 4.97/2.40 25: evalNestedSinglestart -> evalNestedSinglebb5in : A'=B, C'=-1+B, [ B>=1 ], cost: 2+4*B 4.97/2.40 4.97/2.40 22: evalNestedSinglebb5in -> [10] : [ B>=1+A ], cost: 1-3*A+3*B 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Eliminated locations (on tree-shaped paths): 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 26: evalNestedSinglestart -> [10] : A'=0, [ B>=1 ], cost: 3+3*B 4.97/2.40 4.97/2.40 27: evalNestedSinglestart -> [12] : [ B>=1 ], cost: 5+3*B 4.97/2.40 4.97/2.40 28: evalNestedSinglestart -> [12] : [ B>=1 ], cost: 2+4*B 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 ### Computing asymptotic complexity ### 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Fully simplified ITS problem 4.97/2.40 4.97/2.40 Start location: evalNestedSinglestart 4.97/2.40 4.97/2.40 27: evalNestedSinglestart -> [12] : [ B>=1 ], cost: 5+3*B 4.97/2.40 4.97/2.40 28: evalNestedSinglestart -> [12] : [ B>=1 ], cost: 2+4*B 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Computing asymptotic complexity for rule 27 4.97/2.40 4.97/2.40 Solved the limit problem by the following transformations: 4.97/2.40 4.97/2.40 Created initial limit problem: 4.97/2.40 4.97/2.40 5+3*B (+), B (+/+!) [not solved] 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 removing all constraints (solved by SMT) 4.97/2.40 4.97/2.40 resulting limit problem: [solved] 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 applying transformation rule (C) using substitution {B==n} 4.97/2.40 4.97/2.40 resulting limit problem: 4.97/2.40 4.97/2.40 [solved] 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Solution: 4.97/2.40 4.97/2.40 B / n 4.97/2.40 4.97/2.40 Resulting cost 5+3*n has complexity: Poly(n^1) 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Found new complexity Poly(n^1). 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 Obtained the following overall complexity (w.r.t. the length of the input n): 4.97/2.40 4.97/2.40 Complexity: Poly(n^1) 4.97/2.40 4.97/2.40 Cpx degree: 1 4.97/2.40 4.97/2.40 Solved cost: 5+3*n 4.97/2.40 4.97/2.40 Rule cost: 5+3*B 4.97/2.40 4.97/2.40 Rule guard: [ B>=1 ] 4.97/2.40 4.97/2.40 4.97/2.40 4.97/2.40 WORST_CASE(Omega(n^1),?) 4.97/2.40 4.97/2.40 4.97/2.40 ---------------------------------------- 4.97/2.40 4.97/2.40 (4) 4.97/2.40 BOUNDS(n^1, INF) 4.97/2.42 EOF