4.79/2.22 WORST_CASE(Omega(n^1), O(n^1)) 4.79/2.23 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.79/2.23 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.79/2.23 4.79/2.23 4.79/2.23 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.79/2.23 4.79/2.23 (0) CpxIntTrs 4.79/2.23 (1) Koat Proof [FINISHED, 236 ms] 4.79/2.23 (2) BOUNDS(1, n^1) 4.79/2.23 (3) Loat Proof [FINISHED, 516 ms] 4.79/2.23 (4) BOUNDS(n^1, INF) 4.79/2.23 4.79/2.23 4.79/2.23 ---------------------------------------- 4.79/2.23 4.79/2.23 (0) 4.79/2.23 Obligation: 4.79/2.23 Complexity Int TRS consisting of the following rules: 4.79/2.23 evalDis1start(A, B, C, D) -> Com_1(evalDis1entryin(A, B, C, D)) :|: TRUE 4.79/2.23 evalDis1entryin(A, B, C, D) -> Com_1(evalDis1bb3in(B, A, D, C)) :|: TRUE 4.79/2.23 evalDis1bb3in(A, B, C, D) -> Com_1(evalDis1bbin(A, B, C, D)) :|: A >= B + 1 4.79/2.23 evalDis1bb3in(A, B, C, D) -> Com_1(evalDis1returnin(A, B, C, D)) :|: B >= A 4.79/2.23 evalDis1bbin(A, B, C, D) -> Com_1(evalDis1bb1in(A, B, C, D)) :|: C >= D + 1 4.79/2.23 evalDis1bbin(A, B, C, D) -> Com_1(evalDis1bb2in(A, B, C, D)) :|: D >= C 4.79/2.23 evalDis1bb1in(A, B, C, D) -> Com_1(evalDis1bb3in(A, B, C, D + 1)) :|: TRUE 4.79/2.23 evalDis1bb2in(A, B, C, D) -> Com_1(evalDis1bb3in(A, B + 1, C, D)) :|: TRUE 4.79/2.23 evalDis1returnin(A, B, C, D) -> Com_1(evalDis1stop(A, B, C, D)) :|: TRUE 4.79/2.23 4.79/2.23 The start-symbols are:[evalDis1start_4] 4.79/2.23 4.79/2.23 4.79/2.23 ---------------------------------------- 4.79/2.23 4.79/2.23 (1) Koat Proof (FINISHED) 4.79/2.23 YES(?, 6*ar_0 + 6*ar_1 + 3*ar_2 + 3*ar_3 + 10) 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Initial complexity problem: 4.79/2.23 4.79/2.23 1: T: 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.79/2.23 4.79/2.23 2: T: 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 A polynomial rank function with 4.79/2.23 4.79/2.23 Pol(evalDis1start) = 2 4.79/2.23 4.79/2.23 Pol(evalDis1entryin) = 2 4.79/2.23 4.79/2.23 Pol(evalDis1bb3in) = 2 4.79/2.23 4.79/2.23 Pol(evalDis1bbin) = 2 4.79/2.23 4.79/2.23 Pol(evalDis1returnin) = 1 4.79/2.23 4.79/2.23 Pol(evalDis1bb1in) = 2 4.79/2.23 4.79/2.23 Pol(evalDis1bb2in) = 2 4.79/2.23 4.79/2.23 Pol(evalDis1stop) = 0 4.79/2.23 4.79/2.23 Pol(koat_start) = 2 4.79/2.23 4.79/2.23 orients all transitions weakly and the transitions 4.79/2.23 4.79/2.23 evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 strictly and produces the following problem: 4.79/2.23 4.79/2.23 3: T: 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 A polynomial rank function with 4.79/2.23 4.79/2.23 Pol(evalDis1start) = -V_3 + V_4 + 1 4.79/2.23 4.79/2.23 Pol(evalDis1entryin) = -V_3 + V_4 + 1 4.79/2.23 4.79/2.23 Pol(evalDis1bb3in) = V_3 - V_4 + 1 4.79/2.23 4.79/2.23 Pol(evalDis1bbin) = V_3 - V_4 + 1 4.79/2.23 4.79/2.23 Pol(evalDis1returnin) = V_3 - V_4 4.79/2.23 4.79/2.23 Pol(evalDis1bb1in) = V_3 - V_4 4.79/2.23 4.79/2.23 Pol(evalDis1bb2in) = V_3 - V_4 + 1 4.79/2.23 4.79/2.23 Pol(evalDis1stop) = V_3 - V_4 4.79/2.23 4.79/2.23 Pol(koat_start) = -V_3 + V_4 + 1 4.79/2.23 4.79/2.23 orients all transitions weakly and the transition 4.79/2.23 4.79/2.23 evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 strictly and produces the following problem: 4.79/2.23 4.79/2.23 4: T: 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Repeatedly propagating knowledge in problem 4 produces the following problem: 4.79/2.23 4.79/2.23 5: T: 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Applied AI with 'oct' on problem 5 to obtain the following invariants: 4.79/2.23 4.79/2.23 For symbol evalDis1bb1in: X_3 - X_4 - 1 >= 0 /\ X_1 - X_2 - 1 >= 0 4.79/2.23 4.79/2.23 For symbol evalDis1bb2in: -X_3 + X_4 >= 0 /\ X_1 - X_2 - 1 >= 0 4.79/2.23 4.79/2.23 For symbol evalDis1bbin: X_1 - X_2 - 1 >= 0 4.79/2.23 4.79/2.23 For symbol evalDis1returnin: -X_1 + X_2 >= 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 This yielded the following problem: 4.79/2.23 4.79/2.23 6: T: 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) [ -ar_0 + ar_1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ -ar_2 + ar_3 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) [ ar_2 - ar_3 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_1 - 1 >= 0 /\ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_1 - 1 >= 0 /\ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 A polynomial rank function with 4.79/2.23 4.79/2.23 Pol(koat_start) = -2*V_1 + 2*V_2 4.79/2.23 4.79/2.23 Pol(evalDis1start) = -2*V_1 + 2*V_2 4.79/2.23 4.79/2.23 Pol(evalDis1returnin) = 2*V_1 - 2*V_2 4.79/2.23 4.79/2.23 Pol(evalDis1stop) = 2*V_1 - 2*V_2 4.79/2.23 4.79/2.23 Pol(evalDis1bb2in) = 2*V_1 - 2*V_2 - 1 4.79/2.23 4.79/2.23 Pol(evalDis1bb3in) = 2*V_1 - 2*V_2 4.79/2.23 4.79/2.23 Pol(evalDis1bb1in) = 2*V_1 - 2*V_2 4.79/2.23 4.79/2.23 Pol(evalDis1bbin) = 2*V_1 - 2*V_2 4.79/2.23 4.79/2.23 Pol(evalDis1entryin) = -2*V_1 + 2*V_2 4.79/2.23 4.79/2.23 orients all transitions weakly and the transitions 4.79/2.23 4.79/2.23 evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_1 - 1 >= 0 /\ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ -ar_2 + ar_3 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 4.79/2.23 4.79/2.23 strictly and produces the following problem: 4.79/2.23 4.79/2.23 7: T: 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) [ -ar_0 + ar_1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ -ar_2 + ar_3 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) [ ar_2 - ar_3 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_1 - 1 >= 0 /\ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_1 - 1 >= 0 /\ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ?, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Repeatedly propagating knowledge in problem 7 produces the following problem: 4.79/2.23 4.79/2.23 8: T: 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1start(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1returnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1stop(ar_0, ar_1, ar_2, ar_3)) [ -ar_0 + ar_1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis1bb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1 + 1, ar_2, ar_3)) [ -ar_2 + ar_3 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_0, ar_1, ar_2, ar_3 + 1)) [ ar_2 - ar_3 - 1 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 4.79/2.23 4.79/2.23 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_1 - 1 >= 0 /\ ar_3 >= ar_2 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalDis1bbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_1 - 1 >= 0 /\ ar_2 >= ar_3 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 2, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1returnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 ] 4.79/2.23 4.79/2.23 (Comp: ar_2 + ar_3 + 2*ar_0 + 2*ar_1 + 2, Cost: 1) evalDis1bb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bbin(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_1 + 1 ] 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1entryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1bb3in(ar_1, ar_0, ar_3, ar_2)) 4.79/2.23 4.79/2.23 (Comp: 1, Cost: 1) evalDis1start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalDis1entryin(ar_0, ar_1, ar_2, ar_3)) 4.79/2.23 4.79/2.23 start location: koat_start 4.79/2.23 4.79/2.23 leaf cost: 0 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Complexity upper bound 6*ar_0 + 6*ar_1 + 3*ar_2 + 3*ar_3 + 10 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Time: 0.219 sec (SMT: 0.187 sec) 4.79/2.23 4.79/2.23 4.79/2.23 ---------------------------------------- 4.79/2.23 4.79/2.23 (2) 4.79/2.23 BOUNDS(1, n^1) 4.79/2.23 4.79/2.23 ---------------------------------------- 4.79/2.23 4.79/2.23 (3) Loat Proof (FINISHED) 4.79/2.23 4.79/2.23 4.79/2.23 ### Pre-processing the ITS problem ### 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Initial linear ITS problem 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 0: evalDis1start -> evalDis1entryin : [], cost: 1 4.79/2.23 4.79/2.23 1: evalDis1entryin -> evalDis1bb3in : A'=B, B'=A, C'=D, D'=C, [], cost: 1 4.79/2.23 4.79/2.23 2: evalDis1bb3in -> evalDis1bbin : [ A>=1+B ], cost: 1 4.79/2.23 4.79/2.23 3: evalDis1bb3in -> evalDis1returnin : [ B>=A ], cost: 1 4.79/2.23 4.79/2.23 4: evalDis1bbin -> evalDis1bb1in : [ C>=1+D ], cost: 1 4.79/2.23 4.79/2.23 5: evalDis1bbin -> evalDis1bb2in : [ D>=C ], cost: 1 4.79/2.23 4.79/2.23 6: evalDis1bb1in -> evalDis1bb3in : D'=1+D, [], cost: 1 4.79/2.23 4.79/2.23 7: evalDis1bb2in -> evalDis1bb3in : B'=1+B, [], cost: 1 4.79/2.23 4.79/2.23 8: evalDis1returnin -> evalDis1stop : [], cost: 1 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Removed unreachable and leaf rules: 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 0: evalDis1start -> evalDis1entryin : [], cost: 1 4.79/2.23 4.79/2.23 1: evalDis1entryin -> evalDis1bb3in : A'=B, B'=A, C'=D, D'=C, [], cost: 1 4.79/2.23 4.79/2.23 2: evalDis1bb3in -> evalDis1bbin : [ A>=1+B ], cost: 1 4.79/2.23 4.79/2.23 4: evalDis1bbin -> evalDis1bb1in : [ C>=1+D ], cost: 1 4.79/2.23 4.79/2.23 5: evalDis1bbin -> evalDis1bb2in : [ D>=C ], cost: 1 4.79/2.23 4.79/2.23 6: evalDis1bb1in -> evalDis1bb3in : D'=1+D, [], cost: 1 4.79/2.23 4.79/2.23 7: evalDis1bb2in -> evalDis1bb3in : B'=1+B, [], cost: 1 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 ### Simplification by acceleration and chaining ### 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Eliminated locations (on linear paths): 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 9: evalDis1start -> evalDis1bb3in : A'=B, B'=A, C'=D, D'=C, [], cost: 2 4.79/2.23 4.79/2.23 2: evalDis1bb3in -> evalDis1bbin : [ A>=1+B ], cost: 1 4.79/2.23 4.79/2.23 10: evalDis1bbin -> evalDis1bb3in : D'=1+D, [ C>=1+D ], cost: 2 4.79/2.23 4.79/2.23 11: evalDis1bbin -> evalDis1bb3in : B'=1+B, [ D>=C ], cost: 2 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Eliminated locations (on tree-shaped paths): 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 9: evalDis1start -> evalDis1bb3in : A'=B, B'=A, C'=D, D'=C, [], cost: 2 4.79/2.23 4.79/2.23 12: evalDis1bb3in -> evalDis1bb3in : D'=1+D, [ A>=1+B && C>=1+D ], cost: 3 4.79/2.23 4.79/2.23 13: evalDis1bb3in -> evalDis1bb3in : B'=1+B, [ A>=1+B && D>=C ], cost: 3 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Accelerating simple loops of location 2. 4.79/2.23 4.79/2.23 Accelerating the following rules: 4.79/2.23 4.79/2.23 12: evalDis1bb3in -> evalDis1bb3in : D'=1+D, [ A>=1+B && C>=1+D ], cost: 3 4.79/2.23 4.79/2.23 13: evalDis1bb3in -> evalDis1bb3in : B'=1+B, [ A>=1+B && D>=C ], cost: 3 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Accelerated rule 12 with metering function C-D, yielding the new rule 14. 4.79/2.23 4.79/2.23 Accelerated rule 13 with metering function A-B, yielding the new rule 15. 4.79/2.23 4.79/2.23 Removing the simple loops: 12 13. 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Accelerated all simple loops using metering functions (where possible): 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 9: evalDis1start -> evalDis1bb3in : A'=B, B'=A, C'=D, D'=C, [], cost: 2 4.79/2.23 4.79/2.23 14: evalDis1bb3in -> evalDis1bb3in : D'=C, [ A>=1+B && C>=1+D ], cost: 3*C-3*D 4.79/2.23 4.79/2.23 15: evalDis1bb3in -> evalDis1bb3in : B'=A, [ A>=1+B && D>=C ], cost: 3*A-3*B 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Chained accelerated rules (with incoming rules): 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 9: evalDis1start -> evalDis1bb3in : A'=B, B'=A, C'=D, D'=C, [], cost: 2 4.79/2.23 4.79/2.23 16: evalDis1start -> evalDis1bb3in : A'=B, B'=A, C'=D, [ B>=1+A && D>=1+C ], cost: 2-3*C+3*D 4.79/2.23 4.79/2.23 17: evalDis1start -> evalDis1bb3in : A'=B, C'=D, D'=C, [ B>=1+A && C>=D ], cost: 2-3*A+3*B 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Removed unreachable locations (and leaf rules with constant cost): 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 16: evalDis1start -> evalDis1bb3in : A'=B, B'=A, C'=D, [ B>=1+A && D>=1+C ], cost: 2-3*C+3*D 4.79/2.23 4.79/2.23 17: evalDis1start -> evalDis1bb3in : A'=B, C'=D, D'=C, [ B>=1+A && C>=D ], cost: 2-3*A+3*B 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 ### Computing asymptotic complexity ### 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Fully simplified ITS problem 4.79/2.23 4.79/2.23 Start location: evalDis1start 4.79/2.23 4.79/2.23 16: evalDis1start -> evalDis1bb3in : A'=B, B'=A, C'=D, [ B>=1+A && D>=1+C ], cost: 2-3*C+3*D 4.79/2.23 4.79/2.23 17: evalDis1start -> evalDis1bb3in : A'=B, C'=D, D'=C, [ B>=1+A && C>=D ], cost: 2-3*A+3*B 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Computing asymptotic complexity for rule 16 4.79/2.23 4.79/2.23 Solved the limit problem by the following transformations: 4.79/2.23 4.79/2.23 Created initial limit problem: 4.79/2.23 4.79/2.23 2-3*C+3*D (+), -A+B (+/+!), -C+D (+/+!) [not solved] 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 removing all constraints (solved by SMT) 4.79/2.23 4.79/2.23 resulting limit problem: [solved] 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 applying transformation rule (C) using substitution {C==0,D==n,A==-n,B==0} 4.79/2.23 4.79/2.23 resulting limit problem: 4.79/2.23 4.79/2.23 [solved] 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Solution: 4.79/2.23 4.79/2.23 C / 0 4.79/2.23 4.79/2.23 D / n 4.79/2.23 4.79/2.23 A / -n 4.79/2.23 4.79/2.23 B / 0 4.79/2.23 4.79/2.23 Resulting cost 2+3*n has complexity: Poly(n^1) 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Found new complexity Poly(n^1). 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 Obtained the following overall complexity (w.r.t. the length of the input n): 4.79/2.23 4.79/2.23 Complexity: Poly(n^1) 4.79/2.23 4.79/2.23 Cpx degree: 1 4.79/2.23 4.79/2.23 Solved cost: 2+3*n 4.79/2.23 4.79/2.23 Rule cost: 2-3*C+3*D 4.79/2.23 4.79/2.23 Rule guard: [ B>=1+A && D>=1+C ] 4.79/2.23 4.79/2.23 4.79/2.23 4.79/2.23 WORST_CASE(Omega(n^1),?) 4.79/2.23 4.79/2.23 4.79/2.23 ---------------------------------------- 4.79/2.23 4.79/2.23 (4) 4.79/2.23 BOUNDS(n^1, INF) 4.79/2.25 EOF