5.07/2.44 WORST_CASE(Omega(n^1), O(n^1)) 5.07/2.44 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 5.07/2.44 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.07/2.44 5.07/2.44 5.07/2.44 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 5.07/2.44 5.07/2.44 (0) CpxIntTrs 5.07/2.44 (1) Koat Proof [FINISHED, 118 ms] 5.07/2.44 (2) BOUNDS(1, n^1) 5.07/2.44 (3) Loat Proof [FINISHED, 718 ms] 5.07/2.44 (4) BOUNDS(n^1, INF) 5.07/2.44 5.07/2.44 5.07/2.44 ---------------------------------------- 5.07/2.44 5.07/2.44 (0) 5.07/2.44 Obligation: 5.07/2.44 Complexity Int TRS consisting of the following rules: 5.07/2.44 evalDis2start(A, B, C) -> Com_1(evalDis2entryin(A, B, C)) :|: TRUE 5.07/2.44 evalDis2entryin(A, B, C) -> Com_1(evalDis2bb3in(B, C, A)) :|: TRUE 5.07/2.44 evalDis2bb3in(A, B, C) -> Com_1(evalDis2bbin(A, B, C)) :|: A >= C + 1 5.07/2.44 evalDis2bb3in(A, B, C) -> Com_1(evalDis2returnin(A, B, C)) :|: C >= A 5.07/2.44 evalDis2bbin(A, B, C) -> Com_1(evalDis2bb1in(A, B, C)) :|: B >= C + 1 5.07/2.44 evalDis2bbin(A, B, C) -> Com_1(evalDis2bb2in(A, B, C)) :|: C >= B 5.07/2.44 evalDis2bb1in(A, B, C) -> Com_1(evalDis2bb3in(A, B, C + 1)) :|: TRUE 5.07/2.44 evalDis2bb2in(A, B, C) -> Com_1(evalDis2bb3in(A, B + 1, C)) :|: TRUE 5.07/2.44 evalDis2returnin(A, B, C) -> Com_1(evalDis2stop(A, B, C)) :|: TRUE 5.07/2.44 5.07/2.44 The start-symbols are:[evalDis2start_3] 5.07/2.44 5.07/2.44 5.07/2.44 ---------------------------------------- 5.07/2.44 5.07/2.44 (1) Koat Proof (FINISHED) 5.07/2.44 YES(?, 12*ar_1 + 6*ar_2 + 6*ar_0 + 7) 5.07/2.44 5.07/2.44 5.07/2.44 5.07/2.44 Initial complexity problem: 5.07/2.44 5.07/2.44 1: T: 5.07/2.44 5.07/2.44 (Comp: ?, Cost: 1) evalDis2start(ar_0, ar_1, ar_2) -> Com_1(evalDis2entryin(ar_0, ar_1, ar_2)) 5.07/2.44 5.07/2.44 (Comp: ?, Cost: 1) evalDis2entryin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_1, ar_2, ar_0)) 5.07/2.44 5.07/2.44 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bbin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 5.07/2.44 5.07/2.44 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.44 5.07/2.44 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 5.07/2.44 5.07/2.44 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 5.07/2.44 5.07/2.44 (Comp: ?, Cost: 1) evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalDis2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.07/2.45 5.07/2.45 start location: koat_start 5.07/2.45 5.07/2.45 leaf cost: 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Repeatedly propagating knowledge in problem 1 produces the following problem: 5.07/2.45 5.07/2.45 2: T: 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2start(ar_0, ar_1, ar_2) -> Com_1(evalDis2entryin(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2entryin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_1, ar_2, ar_0)) 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bbin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalDis2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.07/2.45 5.07/2.45 start location: koat_start 5.07/2.45 5.07/2.45 leaf cost: 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 A polynomial rank function with 5.07/2.45 5.07/2.45 Pol(evalDis2start) = 2 5.07/2.45 5.07/2.45 Pol(evalDis2entryin) = 2 5.07/2.45 5.07/2.45 Pol(evalDis2bb3in) = 2 5.07/2.45 5.07/2.45 Pol(evalDis2bbin) = 2 5.07/2.45 5.07/2.45 Pol(evalDis2returnin) = 1 5.07/2.45 5.07/2.45 Pol(evalDis2bb1in) = 2 5.07/2.45 5.07/2.45 Pol(evalDis2bb2in) = 2 5.07/2.45 5.07/2.45 Pol(evalDis2stop) = 0 5.07/2.45 5.07/2.45 Pol(koat_start) = 2 5.07/2.45 5.07/2.45 orients all transitions weakly and the transitions 5.07/2.45 5.07/2.45 evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.45 5.07/2.45 strictly and produces the following problem: 5.07/2.45 5.07/2.45 3: T: 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2start(ar_0, ar_1, ar_2) -> Com_1(evalDis2entryin(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2entryin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_1, ar_2, ar_0)) 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bbin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalDis2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.07/2.45 5.07/2.45 start location: koat_start 5.07/2.45 5.07/2.45 leaf cost: 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Applied AI with 'oct' on problem 3 to obtain the following invariants: 5.07/2.45 5.07/2.45 For symbol evalDis2bb1in: X_2 - X_3 - 1 >= 0 /\ X_1 - X_3 - 1 >= 0 5.07/2.45 5.07/2.45 For symbol evalDis2bb2in: X_1 - X_3 - 1 >= 0 /\ -X_2 + X_3 >= 0 /\ X_1 - X_2 - 1 >= 0 5.07/2.45 5.07/2.45 For symbol evalDis2bbin: X_1 - X_3 - 1 >= 0 5.07/2.45 5.07/2.45 For symbol evalDis2returnin: -X_1 + X_3 >= 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 This yielded the following problem: 5.07/2.45 5.07/2.45 4: T: 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalDis2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) [ -ar_0 + ar_2 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ -ar_1 + ar_2 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_0 - ar_2 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_2 >= ar_1 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_1 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bbin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2entryin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_1, ar_2, ar_0)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2start(ar_0, ar_1, ar_2) -> Com_1(evalDis2entryin(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 start location: koat_start 5.07/2.45 5.07/2.45 leaf cost: 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 A polynomial rank function with 5.07/2.45 5.07/2.45 Pol(koat_start) = 2*V_2 - 2*V_3 5.07/2.45 5.07/2.45 Pol(evalDis2start) = 2*V_2 - 2*V_3 5.07/2.45 5.07/2.45 Pol(evalDis2returnin) = 2*V_1 - 2*V_2 5.07/2.45 5.07/2.45 Pol(evalDis2stop) = 2*V_1 - 2*V_2 5.07/2.45 5.07/2.45 Pol(evalDis2bb2in) = 2*V_1 - 2*V_2 - 1 5.07/2.45 5.07/2.45 Pol(evalDis2bb3in) = 2*V_1 - 2*V_2 5.07/2.45 5.07/2.45 Pol(evalDis2bb1in) = 2*V_1 - 2*V_2 5.07/2.45 5.07/2.45 Pol(evalDis2bbin) = 2*V_1 - 2*V_2 5.07/2.45 5.07/2.45 Pol(evalDis2entryin) = 2*V_2 - 2*V_3 5.07/2.45 5.07/2.45 orients all transitions weakly and the transitions 5.07/2.45 5.07/2.45 evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_2 >= ar_1 ] 5.07/2.45 5.07/2.45 evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ -ar_1 + ar_2 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.07/2.45 5.07/2.45 strictly and produces the following problem: 5.07/2.45 5.07/2.45 5: T: 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalDis2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) [ -ar_0 + ar_2 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ -ar_1 + ar_2 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_0 - ar_2 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_2 >= ar_1 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_1 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bbin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2entryin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_1, ar_2, ar_0)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2start(ar_0, ar_1, ar_2) -> Com_1(evalDis2entryin(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 start location: koat_start 5.07/2.45 5.07/2.45 leaf cost: 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 A polynomial rank function with 5.07/2.45 5.07/2.45 Pol(koat_start) = -2*V_1 + 2*V_2 5.07/2.45 5.07/2.45 Pol(evalDis2start) = -2*V_1 + 2*V_2 5.07/2.45 5.07/2.45 Pol(evalDis2returnin) = 2*V_1 - 2*V_3 5.07/2.45 5.07/2.45 Pol(evalDis2stop) = 2*V_1 - 2*V_3 5.07/2.45 5.07/2.45 Pol(evalDis2bb2in) = 2*V_1 - 2*V_3 5.07/2.45 5.07/2.45 Pol(evalDis2bb3in) = 2*V_1 - 2*V_3 5.07/2.45 5.07/2.45 Pol(evalDis2bb1in) = 2*V_1 - 2*V_3 - 1 5.07/2.45 5.07/2.45 Pol(evalDis2bbin) = 2*V_1 - 2*V_3 5.07/2.45 5.07/2.45 Pol(evalDis2entryin) = -2*V_1 + 2*V_2 5.07/2.45 5.07/2.45 orients all transitions weakly and the transitions 5.07/2.45 5.07/2.45 evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_1 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_0 - ar_2 - 1 >= 0 ] 5.07/2.45 5.07/2.45 strictly and produces the following problem: 5.07/2.45 5.07/2.45 6: T: 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalDis2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) [ -ar_0 + ar_2 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ -ar_1 + ar_2 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_0 - ar_2 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_2 >= ar_1 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_1 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.45 5.07/2.45 (Comp: ?, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bbin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2entryin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_1, ar_2, ar_0)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2start(ar_0, ar_1, ar_2) -> Com_1(evalDis2entryin(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 start location: koat_start 5.07/2.45 5.07/2.45 leaf cost: 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Repeatedly propagating knowledge in problem 6 produces the following problem: 5.07/2.45 5.07/2.45 7: T: 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalDis2start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2returnin(ar_0, ar_1, ar_2) -> Com_1(evalDis2stop(ar_0, ar_1, ar_2)) [ -ar_0 + ar_2 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalDis2bb2in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ -ar_1 + ar_2 >= 0 /\ ar_0 - ar_1 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis2bb1in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_0, ar_1, ar_2 + 1)) [ ar_1 - ar_2 - 1 >= 0 /\ ar_0 - ar_2 - 1 >= 0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_1 + 2*ar_2, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_2 >= ar_1 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_0 + 2*ar_1, Cost: 1) evalDis2bbin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb1in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 - 1 >= 0 /\ ar_1 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 2, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2returnin(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 5.07/2.45 5.07/2.45 (Comp: 2*ar_0 + 4*ar_1 + 2*ar_2 + 1, Cost: 1) evalDis2bb3in(ar_0, ar_1, ar_2) -> Com_1(evalDis2bbin(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2entryin(ar_0, ar_1, ar_2) -> Com_1(evalDis2bb3in(ar_1, ar_2, ar_0)) 5.07/2.45 5.07/2.45 (Comp: 1, Cost: 1) evalDis2start(ar_0, ar_1, ar_2) -> Com_1(evalDis2entryin(ar_0, ar_1, ar_2)) 5.07/2.45 5.07/2.45 start location: koat_start 5.07/2.45 5.07/2.45 leaf cost: 0 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Complexity upper bound 12*ar_1 + 6*ar_2 + 6*ar_0 + 7 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Time: 0.205 sec (SMT: 0.184 sec) 5.07/2.45 5.07/2.45 5.07/2.45 ---------------------------------------- 5.07/2.45 5.07/2.45 (2) 5.07/2.45 BOUNDS(1, n^1) 5.07/2.45 5.07/2.45 ---------------------------------------- 5.07/2.45 5.07/2.45 (3) Loat Proof (FINISHED) 5.07/2.45 5.07/2.45 5.07/2.45 ### Pre-processing the ITS problem ### 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Initial linear ITS problem 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 0: evalDis2start -> evalDis2entryin : [], cost: 1 5.07/2.45 5.07/2.45 1: evalDis2entryin -> evalDis2bb3in : A'=B, B'=C, C'=A, [], cost: 1 5.07/2.45 5.07/2.45 2: evalDis2bb3in -> evalDis2bbin : [ A>=1+C ], cost: 1 5.07/2.45 5.07/2.45 3: evalDis2bb3in -> evalDis2returnin : [ C>=A ], cost: 1 5.07/2.45 5.07/2.45 4: evalDis2bbin -> evalDis2bb1in : [ B>=1+C ], cost: 1 5.07/2.45 5.07/2.45 5: evalDis2bbin -> evalDis2bb2in : [ C>=B ], cost: 1 5.07/2.45 5.07/2.45 6: evalDis2bb1in -> evalDis2bb3in : C'=1+C, [], cost: 1 5.07/2.45 5.07/2.45 7: evalDis2bb2in -> evalDis2bb3in : B'=1+B, [], cost: 1 5.07/2.45 5.07/2.45 8: evalDis2returnin -> evalDis2stop : [], cost: 1 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Removed unreachable and leaf rules: 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 0: evalDis2start -> evalDis2entryin : [], cost: 1 5.07/2.45 5.07/2.45 1: evalDis2entryin -> evalDis2bb3in : A'=B, B'=C, C'=A, [], cost: 1 5.07/2.45 5.07/2.45 2: evalDis2bb3in -> evalDis2bbin : [ A>=1+C ], cost: 1 5.07/2.45 5.07/2.45 4: evalDis2bbin -> evalDis2bb1in : [ B>=1+C ], cost: 1 5.07/2.45 5.07/2.45 5: evalDis2bbin -> evalDis2bb2in : [ C>=B ], cost: 1 5.07/2.45 5.07/2.45 6: evalDis2bb1in -> evalDis2bb3in : C'=1+C, [], cost: 1 5.07/2.45 5.07/2.45 7: evalDis2bb2in -> evalDis2bb3in : B'=1+B, [], cost: 1 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 ### Simplification by acceleration and chaining ### 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Eliminated locations (on linear paths): 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 9: evalDis2start -> evalDis2bb3in : A'=B, B'=C, C'=A, [], cost: 2 5.07/2.45 5.07/2.45 2: evalDis2bb3in -> evalDis2bbin : [ A>=1+C ], cost: 1 5.07/2.45 5.07/2.45 10: evalDis2bbin -> evalDis2bb3in : C'=1+C, [ B>=1+C ], cost: 2 5.07/2.45 5.07/2.45 11: evalDis2bbin -> evalDis2bb3in : B'=1+B, [ C>=B ], cost: 2 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Eliminated locations (on tree-shaped paths): 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 9: evalDis2start -> evalDis2bb3in : A'=B, B'=C, C'=A, [], cost: 2 5.07/2.45 5.07/2.45 12: evalDis2bb3in -> evalDis2bb3in : C'=1+C, [ A>=1+C && B>=1+C ], cost: 3 5.07/2.45 5.07/2.45 13: evalDis2bb3in -> evalDis2bb3in : B'=1+B, [ A>=1+C && C>=B ], cost: 3 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Accelerating simple loops of location 2. 5.07/2.45 5.07/2.45 Accelerating the following rules: 5.07/2.45 5.07/2.45 12: evalDis2bb3in -> evalDis2bb3in : C'=1+C, [ A>=1+C && B>=1+C ], cost: 3 5.07/2.45 5.07/2.45 13: evalDis2bb3in -> evalDis2bb3in : B'=1+B, [ A>=1+C && C>=B ], cost: 3 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Accelerated rule 12 with backward acceleration, yielding the new rule 14. 5.07/2.45 5.07/2.45 Accelerated rule 12 with backward acceleration, yielding the new rule 15. 5.07/2.45 5.07/2.45 Accelerated rule 13 with metering function 1+C-B, yielding the new rule 16. 5.07/2.45 5.07/2.45 Removing the simple loops: 12 13. 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Accelerated all simple loops using metering functions (where possible): 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 9: evalDis2start -> evalDis2bb3in : A'=B, B'=C, C'=A, [], cost: 2 5.07/2.45 5.07/2.45 14: evalDis2bb3in -> evalDis2bb3in : C'=A, [ A>=1+C && B>=1+C && B>=A ], cost: -3*C+3*A 5.07/2.45 5.07/2.45 15: evalDis2bb3in -> evalDis2bb3in : C'=B, [ A>=1+C && B>=1+C && A>=B ], cost: -3*C+3*B 5.07/2.45 5.07/2.45 16: evalDis2bb3in -> evalDis2bb3in : B'=1+C, [ A>=1+C && C>=B ], cost: 3+3*C-3*B 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Chained accelerated rules (with incoming rules): 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 9: evalDis2start -> evalDis2bb3in : A'=B, B'=C, C'=A, [], cost: 2 5.07/2.45 5.07/2.45 17: evalDis2start -> evalDis2bb3in : A'=B, B'=C, C'=B, [ B>=1+A && C>=1+A && C>=B ], cost: 2-3*A+3*B 5.07/2.45 5.07/2.45 18: evalDis2start -> evalDis2bb3in : A'=B, B'=C, [ B>=1+A && C>=1+A && B>=C ], cost: 2+3*C-3*A 5.07/2.45 5.07/2.45 19: evalDis2start -> evalDis2bb3in : A'=B, B'=1+A, C'=A, [ B>=1+A && A>=C ], cost: 5-3*C+3*A 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Removed unreachable locations (and leaf rules with constant cost): 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 17: evalDis2start -> evalDis2bb3in : A'=B, B'=C, C'=B, [ B>=1+A && C>=1+A && C>=B ], cost: 2-3*A+3*B 5.07/2.45 5.07/2.45 18: evalDis2start -> evalDis2bb3in : A'=B, B'=C, [ B>=1+A && C>=1+A && B>=C ], cost: 2+3*C-3*A 5.07/2.45 5.07/2.45 19: evalDis2start -> evalDis2bb3in : A'=B, B'=1+A, C'=A, [ B>=1+A && A>=C ], cost: 5-3*C+3*A 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 ### Computing asymptotic complexity ### 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Fully simplified ITS problem 5.07/2.45 5.07/2.45 Start location: evalDis2start 5.07/2.45 5.07/2.45 17: evalDis2start -> evalDis2bb3in : A'=B, B'=C, C'=B, [ B>=1+A && C>=1+A && C>=B ], cost: 2-3*A+3*B 5.07/2.45 5.07/2.45 18: evalDis2start -> evalDis2bb3in : A'=B, B'=C, [ B>=1+A && C>=1+A && B>=C ], cost: 2+3*C-3*A 5.07/2.45 5.07/2.45 19: evalDis2start -> evalDis2bb3in : A'=B, B'=1+A, C'=A, [ B>=1+A && A>=C ], cost: 5-3*C+3*A 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Computing asymptotic complexity for rule 17 5.07/2.45 5.07/2.45 Solved the limit problem by the following transformations: 5.07/2.45 5.07/2.45 Created initial limit problem: 5.07/2.45 5.07/2.45 2-3*A+3*B (+), 1+C-B (+/+!), -A+B (+/+!), C-A (+/+!) [not solved] 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 removing all constraints (solved by SMT) 5.07/2.45 5.07/2.45 resulting limit problem: [solved] 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 applying transformation rule (C) using substitution {C==2*n,A==0,B==n} 5.07/2.45 5.07/2.45 resulting limit problem: 5.07/2.45 5.07/2.45 [solved] 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Solution: 5.07/2.45 5.07/2.45 C / 2*n 5.07/2.45 5.07/2.45 A / 0 5.07/2.45 5.07/2.45 B / n 5.07/2.45 5.07/2.45 Resulting cost 2+3*n has complexity: Poly(n^1) 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Found new complexity Poly(n^1). 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 Obtained the following overall complexity (w.r.t. the length of the input n): 5.07/2.45 5.07/2.45 Complexity: Poly(n^1) 5.07/2.45 5.07/2.45 Cpx degree: 1 5.07/2.45 5.07/2.45 Solved cost: 2+3*n 5.07/2.45 5.07/2.45 Rule cost: 2-3*A+3*B 5.07/2.45 5.07/2.45 Rule guard: [ B>=1+A && C>=1+A && C>=B ] 5.07/2.45 5.07/2.45 5.07/2.45 5.07/2.45 WORST_CASE(Omega(n^1),?) 5.07/2.45 5.07/2.45 5.07/2.45 ---------------------------------------- 5.07/2.45 5.07/2.45 (4) 5.07/2.45 BOUNDS(n^1, INF) 5.07/2.47 EOF