5.22/2.36 WORST_CASE(Omega(n^2), O(n^2)) 5.22/2.37 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 5.22/2.37 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.22/2.37 5.22/2.37 5.22/2.37 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 5.22/2.37 5.22/2.37 (0) CpxIntTrs 5.22/2.37 (1) Koat Proof [FINISHED, 304 ms] 5.22/2.37 (2) BOUNDS(1, n^2) 5.22/2.37 (3) Loat Proof [FINISHED, 689 ms] 5.22/2.37 (4) BOUNDS(n^2, INF) 5.22/2.37 5.22/2.37 5.22/2.37 ---------------------------------------- 5.22/2.37 5.22/2.37 (0) 5.22/2.37 Obligation: 5.22/2.37 Complexity Int TRS consisting of the following rules: 5.22/2.37 evalfstart(A, B, C, D) -> Com_1(evalfentryin(A, B, C, D)) :|: TRUE 5.22/2.37 evalfentryin(A, B, C, D) -> Com_1(evalfbb3in(0, 0, C, D)) :|: TRUE 5.22/2.37 evalfbb3in(A, B, C, D) -> Com_1(evalfbbin(A, B, C, D)) :|: C >= B + 1 5.22/2.37 evalfbb3in(A, B, C, D) -> Com_1(evalfreturnin(A, B, C, D)) :|: B >= C 5.22/2.37 evalfbbin(A, B, C, D) -> Com_1(evalfbb1in(A, B, C, D)) :|: D >= A + 1 5.22/2.37 evalfbbin(A, B, C, D) -> Com_1(evalfbb2in(A, B, C, D)) :|: A >= D 5.22/2.37 evalfbb1in(A, B, C, D) -> Com_1(evalfbb3in(A + 1, B, C, D)) :|: TRUE 5.22/2.37 evalfbb2in(A, B, C, D) -> Com_1(evalfbb3in(0, B + 1, C, D)) :|: TRUE 5.22/2.37 evalfreturnin(A, B, C, D) -> Com_1(evalfstop(A, B, C, D)) :|: TRUE 5.22/2.37 5.22/2.37 The start-symbols are:[evalfstart_4] 5.22/2.37 5.22/2.37 5.22/2.37 ---------------------------------------- 5.22/2.37 5.22/2.37 (1) Koat Proof (FINISHED) 5.22/2.37 YES(?, 6*ar_2 + 6*ar_3 + 12*ar_2*ar_3 + 7) 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Initial complexity problem: 5.22/2.37 5.22/2.37 1: T: 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.22/2.37 5.22/2.37 start location: koat_start 5.22/2.37 5.22/2.37 leaf cost: 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Repeatedly propagating knowledge in problem 1 produces the following problem: 5.22/2.37 5.22/2.37 2: T: 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.22/2.37 5.22/2.37 start location: koat_start 5.22/2.37 5.22/2.37 leaf cost: 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 A polynomial rank function with 5.22/2.37 5.22/2.37 Pol(evalfstart) = 2 5.22/2.37 5.22/2.37 Pol(evalfentryin) = 2 5.22/2.37 5.22/2.37 Pol(evalfbb3in) = 2 5.22/2.37 5.22/2.37 Pol(evalfbbin) = 2 5.22/2.37 5.22/2.37 Pol(evalfreturnin) = 1 5.22/2.37 5.22/2.37 Pol(evalfbb1in) = 2 5.22/2.37 5.22/2.37 Pol(evalfbb2in) = 2 5.22/2.37 5.22/2.37 Pol(evalfstop) = 0 5.22/2.37 5.22/2.37 Pol(koat_start) = 2 5.22/2.37 5.22/2.37 orients all transitions weakly and the transitions 5.22/2.37 5.22/2.37 evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 strictly and produces the following problem: 5.22/2.37 5.22/2.37 3: T: 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.22/2.37 5.22/2.37 start location: koat_start 5.22/2.37 5.22/2.37 leaf cost: 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Applied AI with 'oct' on problem 3 to obtain the following invariants: 5.22/2.37 5.22/2.37 For symbol evalfbb1in: X_4 - 1 >= 0 /\ X_3 + X_4 - 2 >= 0 /\ X_2 + X_4 - 1 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_1 + X_4 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 5.22/2.37 5.22/2.37 For symbol evalfbb2in: X_1 - X_4 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 5.22/2.37 5.22/2.37 For symbol evalfbb3in: X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 5.22/2.37 5.22/2.37 For symbol evalfbbin: X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 5.22/2.37 5.22/2.37 For symbol evalfreturnin: X_2 - X_3 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 This yielded the following problem: 5.22/2.37 5.22/2.37 4: T: 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 start location: koat_start 5.22/2.37 5.22/2.37 leaf cost: 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 A polynomial rank function with 5.22/2.37 5.22/2.37 Pol(koat_start) = 2*V_3 5.22/2.37 5.22/2.37 Pol(evalfstart) = 2*V_3 5.22/2.37 5.22/2.37 Pol(evalfreturnin) = -2*V_2 + 2*V_3 5.22/2.37 5.22/2.37 Pol(evalfstop) = -2*V_2 + 2*V_3 5.22/2.37 5.22/2.37 Pol(evalfbb2in) = -2*V_2 + 2*V_3 - 1 5.22/2.37 5.22/2.37 Pol(evalfbb3in) = -2*V_2 + 2*V_3 5.22/2.37 5.22/2.37 Pol(evalfbb1in) = -2*V_2 + 2*V_3 5.22/2.37 5.22/2.37 Pol(evalfbbin) = -2*V_2 + 2*V_3 5.22/2.37 5.22/2.37 Pol(evalfentryin) = 2*V_3 5.22/2.37 5.22/2.37 orients all transitions weakly and the transitions 5.22/2.37 5.22/2.37 evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 strictly and produces the following problem: 5.22/2.37 5.22/2.37 5: T: 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_2, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 start location: koat_start 5.22/2.37 5.22/2.37 leaf cost: 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 A polynomial rank function with 5.22/2.37 5.22/2.37 Pol(evalfbbin) = -2*V_1 + 2*V_4 5.22/2.37 5.22/2.37 Pol(evalfbb1in) = -2*V_1 + 2*V_4 - 1 5.22/2.37 5.22/2.37 Pol(evalfbb3in) = -2*V_1 + 2*V_4 5.22/2.37 5.22/2.37 and size complexities 5.22/2.37 5.22/2.37 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-0) = ar_0 5.22/2.37 5.22/2.37 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-1) = ar_1 5.22/2.37 5.22/2.37 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3))", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3))", 0-0) = 0 5.22/2.37 5.22/2.37 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3))", 0-1) = 0 5.22/2.37 5.22/2.37 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3))", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3))", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_2 >= ar_1 + 1 ]", 0-0) = ar_3 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_2 >= ar_1 + 1 ]", 0-1) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_2 >= ar_1 + 1 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_2 >= ar_1 + 1 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_1 >= ar_2 ]", 0-0) = 0 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_1 >= ar_2 ]", 0-1) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_1 >= ar_2 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_1 >= ar_2 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_3 >= ar_0 + 1 ]", 0-0) = ar_3 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_3 >= ar_0 + 1 ]", 0-1) = ar_2 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_3 >= ar_0 + 1 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_3 >= ar_0 + 1 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_0 >= ar_3 ]", 0-0) = ar_3 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_0 >= ar_3 ]", 0-1) = ar_2 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_0 >= ar_3 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_0 >= ar_3 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\\ ar_2 + ar_3 - 2 >= 0 /\\ ar_1 + ar_3 - 1 >= 0 /\\ ar_0 + ar_3 - 1 >= 0 /\\ -ar_0 + ar_3 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-0) = ar_3 5.22/2.37 5.22/2.37 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\\ ar_2 + ar_3 - 2 >= 0 /\\ ar_1 + ar_3 - 1 >= 0 /\\ ar_0 + ar_3 - 1 >= 0 /\\ -ar_0 + ar_3 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-1) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\\ ar_2 + ar_3 - 2 >= 0 /\\ ar_1 + ar_3 - 1 >= 0 /\\ ar_0 + ar_3 - 1 >= 0 /\\ -ar_0 + ar_3 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\\ ar_2 + ar_3 - 2 >= 0 /\\ ar_1 + ar_3 - 1 >= 0 /\\ ar_0 + ar_3 - 1 >= 0 /\\ -ar_0 + ar_3 - 1 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-0) = 0 5.22/2.37 5.22/2.37 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-1) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\\ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-0) = 0 5.22/2.37 5.22/2.37 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-1) = ar_2 5.22/2.37 5.22/2.37 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-0) = ar_0 5.22/2.37 5.22/2.37 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-1) = ar_1 5.22/2.37 5.22/2.37 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-2) = ar_2 5.22/2.37 5.22/2.37 S("koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ]", 0-3) = ar_3 5.22/2.37 5.22/2.37 orients the transitions 5.22/2.37 5.22/2.37 evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 weakly and the transitions 5.22/2.37 5.22/2.37 evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 strictly and produces the following problem: 5.22/2.37 5.22/2.37 6: T: 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_3 + 4*ar_2*ar_3, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_2, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_3 + 4*ar_2*ar_3, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 (Comp: ?, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 start location: koat_start 5.22/2.37 5.22/2.37 leaf cost: 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Repeatedly propagating knowledge in problem 6 produces the following problem: 5.22/2.37 5.22/2.37 7: T: 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfreturnin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfstop(ar_0, ar_1, ar_2, ar_3)) [ ar_1 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_2, Cost: 1) evalfbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, ar_1 + 1, ar_2, ar_3)) [ ar_0 - ar_3 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_3 + 4*ar_2*ar_3, Cost: 1) evalfbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_3 - 1 >= 0 /\ ar_2 + ar_3 - 2 >= 0 /\ ar_1 + ar_3 - 1 >= 0 /\ ar_0 + ar_3 - 1 >= 0 /\ -ar_0 + ar_3 - 1 >= 0 /\ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_2, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_3 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_3 + 4*ar_2*ar_3, Cost: 1) evalfbbin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_0 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 2, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfreturnin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_2 ] 5.22/2.37 5.22/2.37 (Comp: 2*ar_3 + 4*ar_2*ar_3 + 2*ar_2 + 1, Cost: 1) evalfbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbbin(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_1 + 1 ] 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfentryin(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfbb3in(0, 0, ar_2, ar_3)) 5.22/2.37 5.22/2.37 (Comp: 1, Cost: 1) evalfstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfentryin(ar_0, ar_1, ar_2, ar_3)) 5.22/2.37 5.22/2.37 start location: koat_start 5.22/2.37 5.22/2.37 leaf cost: 0 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Complexity upper bound 6*ar_2 + 6*ar_3 + 12*ar_2*ar_3 + 7 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Time: 0.295 sec (SMT: 0.247 sec) 5.22/2.37 5.22/2.37 5.22/2.37 ---------------------------------------- 5.22/2.37 5.22/2.37 (2) 5.22/2.37 BOUNDS(1, n^2) 5.22/2.37 5.22/2.37 ---------------------------------------- 5.22/2.37 5.22/2.37 (3) Loat Proof (FINISHED) 5.22/2.37 5.22/2.37 5.22/2.37 ### Pre-processing the ITS problem ### 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Initial linear ITS problem 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 0: evalfstart -> evalfentryin : [], cost: 1 5.22/2.37 5.22/2.37 1: evalfentryin -> evalfbb3in : A'=0, B'=0, [], cost: 1 5.22/2.37 5.22/2.37 2: evalfbb3in -> evalfbbin : [ C>=1+B ], cost: 1 5.22/2.37 5.22/2.37 3: evalfbb3in -> evalfreturnin : [ B>=C ], cost: 1 5.22/2.37 5.22/2.37 4: evalfbbin -> evalfbb1in : [ D>=1+A ], cost: 1 5.22/2.37 5.22/2.37 5: evalfbbin -> evalfbb2in : [ A>=D ], cost: 1 5.22/2.37 5.22/2.37 6: evalfbb1in -> evalfbb3in : A'=1+A, [], cost: 1 5.22/2.37 5.22/2.37 7: evalfbb2in -> evalfbb3in : A'=0, B'=1+B, [], cost: 1 5.22/2.37 5.22/2.37 8: evalfreturnin -> evalfstop : [], cost: 1 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Removed unreachable and leaf rules: 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 0: evalfstart -> evalfentryin : [], cost: 1 5.22/2.37 5.22/2.37 1: evalfentryin -> evalfbb3in : A'=0, B'=0, [], cost: 1 5.22/2.37 5.22/2.37 2: evalfbb3in -> evalfbbin : [ C>=1+B ], cost: 1 5.22/2.37 5.22/2.37 4: evalfbbin -> evalfbb1in : [ D>=1+A ], cost: 1 5.22/2.37 5.22/2.37 5: evalfbbin -> evalfbb2in : [ A>=D ], cost: 1 5.22/2.37 5.22/2.37 6: evalfbb1in -> evalfbb3in : A'=1+A, [], cost: 1 5.22/2.37 5.22/2.37 7: evalfbb2in -> evalfbb3in : A'=0, B'=1+B, [], cost: 1 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 ### Simplification by acceleration and chaining ### 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Eliminated locations (on linear paths): 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 9: evalfstart -> evalfbb3in : A'=0, B'=0, [], cost: 2 5.22/2.37 5.22/2.37 2: evalfbb3in -> evalfbbin : [ C>=1+B ], cost: 1 5.22/2.37 5.22/2.37 10: evalfbbin -> evalfbb3in : A'=1+A, [ D>=1+A ], cost: 2 5.22/2.37 5.22/2.37 11: evalfbbin -> evalfbb3in : A'=0, B'=1+B, [ A>=D ], cost: 2 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Eliminated locations (on tree-shaped paths): 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 9: evalfstart -> evalfbb3in : A'=0, B'=0, [], cost: 2 5.22/2.37 5.22/2.37 12: evalfbb3in -> evalfbb3in : A'=1+A, [ C>=1+B && D>=1+A ], cost: 3 5.22/2.37 5.22/2.37 13: evalfbb3in -> evalfbb3in : A'=0, B'=1+B, [ C>=1+B && A>=D ], cost: 3 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Accelerating simple loops of location 2. 5.22/2.37 5.22/2.37 Accelerating the following rules: 5.22/2.37 5.22/2.37 12: evalfbb3in -> evalfbb3in : A'=1+A, [ C>=1+B && D>=1+A ], cost: 3 5.22/2.37 5.22/2.37 13: evalfbb3in -> evalfbb3in : A'=0, B'=1+B, [ C>=1+B && A>=D ], cost: 3 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Accelerated rule 12 with metering function D-A, yielding the new rule 14. 5.22/2.37 5.22/2.37 Accelerated rule 13 with metering function C-B (after strengthening guard), yielding the new rule 15. 5.22/2.37 5.22/2.37 Nested simple loops 13 (outer loop) and 14 (inner loop) with metering function -1+C-B, resulting in the new rules: 16, 17. 5.22/2.37 5.22/2.37 Removing the simple loops: 12 13. 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Accelerated all simple loops using metering functions (where possible): 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 9: evalfstart -> evalfbb3in : A'=0, B'=0, [], cost: 2 5.22/2.37 5.22/2.37 14: evalfbb3in -> evalfbb3in : A'=D, [ C>=1+B && D>=1+A ], cost: 3*D-3*A 5.22/2.37 5.22/2.37 15: evalfbb3in -> evalfbb3in : A'=0, B'=C, [ C>=1+B && A>=D && 0>=D ], cost: 3*C-3*B 5.22/2.37 5.22/2.37 16: evalfbb3in -> evalfbb3in : A'=D, B'=-1+C, [ A>=D && C>=2+B && D>=1 ], cost: -3+3*C+3*D*(-1+C-B)-3*B 5.22/2.37 5.22/2.37 17: evalfbb3in -> evalfbb3in : A'=D, B'=-1+C, [ D>=1+A && C>=2+B && D>=1 ], cost: -3+3*C+3*D-3*A+3*D*(-1+C-B)-3*B 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Chained accelerated rules (with incoming rules): 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 9: evalfstart -> evalfbb3in : A'=0, B'=0, [], cost: 2 5.22/2.37 5.22/2.37 18: evalfstart -> evalfbb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 5.22/2.37 5.22/2.37 19: evalfstart -> evalfbb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C 5.22/2.37 5.22/2.37 20: evalfstart -> evalfbb3in : A'=D, B'=-1+C, [ D>=1 && C>=2 ], cost: -1+3*D*(-1+C)+3*C+3*D 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Removed unreachable locations (and leaf rules with constant cost): 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 18: evalfstart -> evalfbb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 5.22/2.37 5.22/2.37 19: evalfstart -> evalfbb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C 5.22/2.37 5.22/2.37 20: evalfstart -> evalfbb3in : A'=D, B'=-1+C, [ D>=1 && C>=2 ], cost: -1+3*D*(-1+C)+3*C+3*D 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 ### Computing asymptotic complexity ### 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Fully simplified ITS problem 5.22/2.37 5.22/2.37 Start location: evalfstart 5.22/2.37 5.22/2.37 18: evalfstart -> evalfbb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 5.22/2.37 5.22/2.37 19: evalfstart -> evalfbb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C 5.22/2.37 5.22/2.37 20: evalfstart -> evalfbb3in : A'=D, B'=-1+C, [ D>=1 && C>=2 ], cost: -1+3*D*(-1+C)+3*C+3*D 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Computing asymptotic complexity for rule 18 5.22/2.37 5.22/2.37 Solved the limit problem by the following transformations: 5.22/2.37 5.22/2.37 Created initial limit problem: 5.22/2.37 5.22/2.37 C (+/+!), D (+/+!), 2+3*D (+) [not solved] 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 removing all constraints (solved by SMT) 5.22/2.37 5.22/2.37 resulting limit problem: [solved] 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 applying transformation rule (C) using substitution {C==1,D==n} 5.22/2.37 5.22/2.37 resulting limit problem: 5.22/2.37 5.22/2.37 [solved] 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Solution: 5.22/2.37 5.22/2.37 C / 1 5.22/2.37 5.22/2.37 D / n 5.22/2.37 5.22/2.37 Resulting cost 2+3*n has complexity: Poly(n^1) 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Found new complexity Poly(n^1). 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Computing asymptotic complexity for rule 20 5.22/2.37 5.22/2.37 Solved the limit problem by the following transformations: 5.22/2.37 5.22/2.37 Created initial limit problem: 5.22/2.37 5.22/2.37 -1+3*C+3*C*D (+), D (+/+!), -1+C (+/+!) [not solved] 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 removing all constraints (solved by SMT) 5.22/2.37 5.22/2.37 resulting limit problem: [solved] 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 applying transformation rule (C) using substitution {C==n,D==n} 5.22/2.37 5.22/2.37 resulting limit problem: 5.22/2.37 5.22/2.37 [solved] 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Solution: 5.22/2.37 5.22/2.37 C / n 5.22/2.37 5.22/2.37 D / n 5.22/2.37 5.22/2.37 Resulting cost -1+3*n^2+3*n has complexity: Poly(n^2) 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Found new complexity Poly(n^2). 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 Obtained the following overall complexity (w.r.t. the length of the input n): 5.22/2.37 5.22/2.37 Complexity: Poly(n^2) 5.22/2.37 5.22/2.37 Cpx degree: 2 5.22/2.37 5.22/2.37 Solved cost: -1+3*n^2+3*n 5.22/2.37 5.22/2.37 Rule cost: -1+3*D*(-1+C)+3*C+3*D 5.22/2.37 5.22/2.37 Rule guard: [ D>=1 && C>=2 ] 5.22/2.37 5.22/2.37 5.22/2.37 5.22/2.37 WORST_CASE(Omega(n^2),?) 5.22/2.37 5.22/2.37 5.22/2.37 ---------------------------------------- 5.22/2.37 5.22/2.37 (4) 5.22/2.37 BOUNDS(n^2, INF) 5.22/2.38 EOF