3.99/2.32 WORST_CASE(Omega(n^1), O(n^1)) 3.99/2.32 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.99/2.32 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.99/2.32 3.99/2.32 3.99/2.32 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 3.99/2.32 3.99/2.32 (0) CpxIntTrs 3.99/2.32 (1) Koat Proof [FINISHED, 30 ms] 3.99/2.32 (2) BOUNDS(1, n^1) 3.99/2.32 (3) Loat Proof [FINISHED, 317 ms] 3.99/2.32 (4) BOUNDS(n^1, INF) 3.99/2.32 3.99/2.32 3.99/2.32 ---------------------------------------- 3.99/2.32 3.99/2.32 (0) 3.99/2.32 Obligation: 3.99/2.32 Complexity Int TRS consisting of the following rules: 3.99/2.32 eval1(A, B, C) -> Com_1(eval2(A, B, C)) :|: A >= B + 1 && C >= A && C <= A 3.99/2.32 eval2(A, B, C) -> Com_1(eval2(A - 1, B, C - 1)) :|: A >= B + 1 3.99/2.32 eval2(A, B, C) -> Com_1(eval1(A, B, C)) :|: B >= A 3.99/2.32 start(A, B, C) -> Com_1(eval1(A, B, C)) :|: TRUE 3.99/2.32 3.99/2.32 The start-symbols are:[start_3] 3.99/2.32 3.99/2.32 3.99/2.32 ---------------------------------------- 3.99/2.32 3.99/2.32 (1) Koat Proof (FINISHED) 3.99/2.32 YES(?, ar_0 + ar_1 + 3) 3.99/2.32 3.99/2.32 3.99/2.32 3.99/2.32 Initial complexity problem: 3.99/2.32 3.99/2.32 1: T: 3.99/2.32 3.99/2.32 (Comp: ?, Cost: 1) eval1(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 /\ ar_2 = ar_0 ] 3.99/2.32 3.99/2.32 (Comp: ?, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ] 3.99/2.32 3.99/2.32 (Comp: ?, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 3.99/2.32 3.99/2.32 (Comp: ?, Cost: 1) start(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.99/2.32 3.99/2.32 start location: koat_start 3.99/2.32 3.99/2.32 leaf cost: 0 3.99/2.32 3.99/2.32 3.99/2.32 3.99/2.32 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.99/2.32 3.99/2.32 2: T: 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 1) eval1(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 /\ ar_2 = ar_0 ] 3.99/2.32 3.99/2.32 (Comp: ?, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ] 3.99/2.32 3.99/2.32 (Comp: ?, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.99/2.32 3.99/2.32 start location: koat_start 3.99/2.32 3.99/2.32 leaf cost: 0 3.99/2.32 3.99/2.32 3.99/2.32 3.99/2.32 A polynomial rank function with 3.99/2.32 3.99/2.32 Pol(eval2) = 1 3.99/2.32 3.99/2.32 Pol(eval1) = 0 3.99/2.32 3.99/2.32 and size complexities 3.99/2.32 3.99/2.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 3.99/2.32 3.99/2.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 3.99/2.32 3.99/2.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(start(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 3.99/2.32 3.99/2.32 S("start(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2))", 0-0) = ar_0 3.99/2.32 3.99/2.32 S("start(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2))", 0-1) = ar_1 3.99/2.32 3.99/2.32 S("start(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2))", 0-2) = ar_2 3.99/2.32 3.99/2.32 S("eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ]", 0-0) = ? 3.99/2.32 3.99/2.32 S("eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ]", 0-1) = ar_1 3.99/2.32 3.99/2.32 S("eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ]", 0-2) = ? 3.99/2.32 3.99/2.32 S("eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ]", 0-0) = ? 3.99/2.32 3.99/2.32 S("eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ]", 0-1) = ar_1 3.99/2.32 3.99/2.32 S("eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ]", 0-2) = ? 3.99/2.32 3.99/2.32 S("eval1(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 /\\ ar_2 = ar_0 ]", 0-0) = ar_0 3.99/2.32 3.99/2.32 S("eval1(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 /\\ ar_2 = ar_0 ]", 0-1) = ar_1 3.99/2.32 3.99/2.32 S("eval1(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 /\\ ar_2 = ar_0 ]", 0-2) = ar_2 3.99/2.32 3.99/2.32 orients the transitions 3.99/2.32 3.99/2.32 eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ] 3.99/2.32 3.99/2.32 eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 3.99/2.32 3.99/2.32 weakly and the transition 3.99/2.32 3.99/2.32 eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 3.99/2.32 3.99/2.32 strictly and produces the following problem: 3.99/2.32 3.99/2.32 3: T: 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 1) eval1(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 /\ ar_2 = ar_0 ] 3.99/2.32 3.99/2.32 (Comp: ?, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ] 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.99/2.32 3.99/2.32 start location: koat_start 3.99/2.32 3.99/2.32 leaf cost: 0 3.99/2.32 3.99/2.32 3.99/2.32 3.99/2.32 A polynomial rank function with 3.99/2.32 3.99/2.32 Pol(eval1) = V_1 - V_2 3.99/2.32 3.99/2.32 Pol(eval2) = V_1 - V_2 3.99/2.32 3.99/2.32 Pol(start) = V_1 - V_2 3.99/2.32 3.99/2.32 Pol(koat_start) = V_1 - V_2 3.99/2.32 3.99/2.32 orients all transitions weakly and the transition 3.99/2.32 3.99/2.32 eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ] 3.99/2.32 3.99/2.32 strictly and produces the following problem: 3.99/2.32 3.99/2.32 4: T: 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 1) eval1(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 /\ ar_2 = ar_0 ] 3.99/2.32 3.99/2.32 (Comp: ar_0 + ar_1, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval2(ar_0 - 1, ar_1, ar_2 - 1)) [ ar_0 >= ar_1 + 1 ] 3.99/2.32 3.99/2.32 (Comp: 1, Cost: 1) eval2(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 ] 3.99/2.33 3.99/2.33 (Comp: 1, Cost: 1) start(ar_0, ar_1, ar_2) -> Com_1(eval1(ar_0, ar_1, ar_2)) 3.99/2.33 3.99/2.33 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.99/2.33 3.99/2.33 start location: koat_start 3.99/2.33 3.99/2.33 leaf cost: 0 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Complexity upper bound ar_0 + ar_1 + 3 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Time: 0.050 sec (SMT: 0.044 sec) 3.99/2.33 3.99/2.33 3.99/2.33 ---------------------------------------- 3.99/2.33 3.99/2.33 (2) 3.99/2.33 BOUNDS(1, n^1) 3.99/2.33 3.99/2.33 ---------------------------------------- 3.99/2.33 3.99/2.33 (3) Loat Proof (FINISHED) 3.99/2.33 3.99/2.33 3.99/2.33 ### Pre-processing the ITS problem ### 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Initial linear ITS problem 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 0: eval1 -> eval2 : [ A>=1+B && C==A ], cost: 1 3.99/2.33 3.99/2.33 1: eval2 -> eval2 : A'=-1+A, C'=-1+C, [ A>=1+B ], cost: 1 3.99/2.33 3.99/2.33 2: eval2 -> eval1 : [ B>=A ], cost: 1 3.99/2.33 3.99/2.33 3: start -> eval1 : [], cost: 1 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 ### Simplification by acceleration and chaining ### 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Accelerating simple loops of location 1. 3.99/2.33 3.99/2.33 Accelerating the following rules: 3.99/2.33 3.99/2.33 1: eval2 -> eval2 : A'=-1+A, C'=-1+C, [ A>=1+B ], cost: 1 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Accelerated rule 1 with metering function A-B, yielding the new rule 4. 3.99/2.33 3.99/2.33 Removing the simple loops: 1. 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Accelerated all simple loops using metering functions (where possible): 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 0: eval1 -> eval2 : [ A>=1+B && C==A ], cost: 1 3.99/2.33 3.99/2.33 2: eval2 -> eval1 : [ B>=A ], cost: 1 3.99/2.33 3.99/2.33 4: eval2 -> eval2 : A'=B, C'=C-A+B, [ A>=1+B ], cost: A-B 3.99/2.33 3.99/2.33 3: start -> eval1 : [], cost: 1 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Chained accelerated rules (with incoming rules): 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 0: eval1 -> eval2 : [ A>=1+B && C==A ], cost: 1 3.99/2.33 3.99/2.33 5: eval1 -> eval2 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 1+A-B 3.99/2.33 3.99/2.33 2: eval2 -> eval1 : [ B>=A ], cost: 1 3.99/2.33 3.99/2.33 3: start -> eval1 : [], cost: 1 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Eliminated locations (on tree-shaped paths): 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 6: eval1 -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 2+A-B 3.99/2.33 3.99/2.33 3: start -> eval1 : [], cost: 1 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Accelerating simple loops of location 0. 3.99/2.33 3.99/2.33 Accelerating the following rules: 3.99/2.33 3.99/2.33 6: eval1 -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 2+A-B 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Found no metering function for rule 6. 3.99/2.33 3.99/2.33 Removing the simple loops:. 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Accelerated all simple loops using metering functions (where possible): 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 6: eval1 -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 2+A-B 3.99/2.33 3.99/2.33 3: start -> eval1 : [], cost: 1 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Chained accelerated rules (with incoming rules): 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 3: start -> eval1 : [], cost: 1 3.99/2.33 3.99/2.33 7: start -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 3+A-B 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Removed unreachable locations (and leaf rules with constant cost): 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 7: start -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 3+A-B 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 ### Computing asymptotic complexity ### 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Fully simplified ITS problem 3.99/2.33 3.99/2.33 Start location: start 3.99/2.33 3.99/2.33 7: start -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 3+A-B 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Computing asymptotic complexity for rule 7 3.99/2.33 3.99/2.33 Solved the limit problem by the following transformations: 3.99/2.33 3.99/2.33 Created initial limit problem: 3.99/2.33 3.99/2.33 1-C+A (+/+!), 3+A-B (+), 1+C-A (+/+!), A-B (+/+!) [not solved] 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 applying transformation rule (C) using substitution {C==A} 3.99/2.33 3.99/2.33 resulting limit problem: 3.99/2.33 3.99/2.33 1 (+/+!), 3+A-B (+), A-B (+/+!) [not solved] 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 applying transformation rule (B), deleting 1 (+/+!) 3.99/2.33 3.99/2.33 resulting limit problem: 3.99/2.33 3.99/2.33 3+A-B (+), A-B (+/+!) [not solved] 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 removing all constraints (solved by SMT) 3.99/2.33 3.99/2.33 resulting limit problem: [solved] 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 applying transformation rule (C) using substitution {A==0,B==-n} 3.99/2.33 3.99/2.33 resulting limit problem: 3.99/2.33 3.99/2.33 [solved] 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Solution: 3.99/2.33 3.99/2.33 C / 0 3.99/2.33 3.99/2.33 A / 0 3.99/2.33 3.99/2.33 B / -n 3.99/2.33 3.99/2.33 Resulting cost 3+n has complexity: Poly(n^1) 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Found new complexity Poly(n^1). 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 Obtained the following overall complexity (w.r.t. the length of the input n): 3.99/2.33 3.99/2.33 Complexity: Poly(n^1) 3.99/2.33 3.99/2.33 Cpx degree: 1 3.99/2.33 3.99/2.33 Solved cost: 3+n 3.99/2.33 3.99/2.33 Rule cost: 3+A-B 3.99/2.33 3.99/2.33 Rule guard: [ A>=1+B && C==A ] 3.99/2.33 3.99/2.33 3.99/2.33 3.99/2.33 WORST_CASE(Omega(n^1),?) 3.99/2.33 3.99/2.33 3.99/2.33 ---------------------------------------- 3.99/2.33 3.99/2.33 (4) 3.99/2.33 BOUNDS(n^1, INF) 3.99/2.34 EOF