4.76/2.64 WORST_CASE(Omega(n^1), O(n^1)) 4.76/2.65 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.76/2.65 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.76/2.65 4.76/2.65 4.76/2.65 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + 2 * Arg_0) + nat(Arg_0) + nat(2 * Arg_1)). 4.76/2.65 4.76/2.65 (0) CpxIntTrs 4.76/2.65 (1) Koat2 Proof [FINISHED, 243 ms] 4.76/2.65 (2) BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_0) + nat(2 * Arg_1)) 4.76/2.65 (3) Loat Proof [FINISHED, 1038 ms] 4.76/2.65 (4) BOUNDS(n^1, INF) 4.76/2.65 4.76/2.65 4.76/2.65 ---------------------------------------- 4.76/2.65 4.76/2.65 (0) 4.76/2.65 Obligation: 4.76/2.65 Complexity Int TRS consisting of the following rules: 4.76/2.65 eval(A, B) -> Com_1(eval(A - 1, B)) :|: A + B >= 1 && A >= B + 1 4.76/2.65 eval(A, B) -> Com_1(eval(A - 1, B)) :|: 2 * A >= 1 && B >= A && B <= A 4.76/2.65 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A + B >= 1 && B >= A && B >= A + 1 4.76/2.65 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A + B >= 1 && B >= A && A >= B + 1 4.76/2.65 start(A, B) -> Com_1(eval(A, B)) :|: TRUE 4.76/2.65 4.76/2.65 The start-symbols are:[start_2] 4.76/2.65 4.76/2.65 4.76/2.65 ---------------------------------------- 4.76/2.65 4.76/2.65 (1) Koat2 Proof (FINISHED) 4.76/2.65 YES( ?, 1+max([0, 2*Arg_0])+max([0, Arg_0])+max([0, 2*Arg_1]) {O(n)}) 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Initial Complexity Problem: 4.76/2.65 4.76/2.65 Start: start 4.76/2.65 4.76/2.65 Program_Vars: Arg_0, Arg_1 4.76/2.65 4.76/2.65 Temp_Vars: 4.76/2.65 4.76/2.65 Locations: eval, start 4.76/2.65 4.76/2.65 Transitions: 4.76/2.65 4.76/2.65 eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1):|:1 <= Arg_0+Arg_1 && Arg_1+1 <= Arg_0 4.76/2.65 4.76/2.65 eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1):|:1 <= (2)*Arg_0 && Arg_1 <= Arg_0 && Arg_0 <= Arg_1 4.76/2.65 4.76/2.65 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_1-1):|:1 <= Arg_0+Arg_1 && Arg_0 <= Arg_1 && Arg_0+1 <= Arg_1 4.76/2.65 4.76/2.65 start(Arg_0,Arg_1) -> eval(Arg_0,Arg_1):|: 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Timebounds: 4.76/2.65 4.76/2.65 Overall timebound: 1+max([0, 2*Arg_0])+max([0, Arg_0])+max([0, 2*Arg_1]) {O(n)} 4.76/2.65 4.76/2.65 0: eval->eval: max([0, Arg_0]) {O(n)} 4.76/2.65 4.76/2.65 1: eval->eval: max([0, 2*Arg_0]) {O(n)} 4.76/2.65 4.76/2.65 2: eval->eval: max([0, 2*Arg_1]) {O(n)} 4.76/2.65 4.76/2.65 4: start->eval: 1 {O(1)} 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Costbounds: 4.76/2.65 4.76/2.65 Overall costbound: 1+max([0, 2*Arg_0])+max([0, Arg_0])+max([0, 2*Arg_1]) {O(n)} 4.76/2.65 4.76/2.65 0: eval->eval: max([0, Arg_0]) {O(n)} 4.76/2.65 4.76/2.65 1: eval->eval: max([0, 2*Arg_0]) {O(n)} 4.76/2.65 4.76/2.65 2: eval->eval: max([0, 2*Arg_1]) {O(n)} 4.76/2.65 4.76/2.65 4: start->eval: 1 {O(1)} 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Sizebounds: 4.76/2.65 4.76/2.65 `Lower: 4.76/2.65 4.76/2.65 0: eval->eval, Arg_0: 0 {O(1)} 4.76/2.65 4.76/2.65 0: eval->eval, Arg_1: Arg_1 {O(n)} 4.76/2.65 4.76/2.65 1: eval->eval, Arg_0: 0 {O(1)} 4.76/2.65 4.76/2.65 1: eval->eval, Arg_1: 1 {O(1)} 4.76/2.65 4.76/2.65 2: eval->eval, Arg_0: min([0, Arg_0]) {O(n)} 4.76/2.65 4.76/2.65 2: eval->eval, Arg_1: 0 {O(1)} 4.76/2.65 4.76/2.65 4: start->eval, Arg_0: Arg_0 {O(n)} 4.76/2.65 4.76/2.65 4: start->eval, Arg_1: Arg_1 {O(n)} 4.76/2.65 4.76/2.65 `Upper: 4.76/2.65 4.76/2.65 0: eval->eval, Arg_0: Arg_0 {O(n)} 4.76/2.65 4.76/2.65 0: eval->eval, Arg_1: Arg_1 {O(n)} 4.76/2.65 4.76/2.65 1: eval->eval, Arg_0: Arg_0 {O(n)} 4.76/2.65 4.76/2.65 1: eval->eval, Arg_1: Arg_1 {O(n)} 4.76/2.65 4.76/2.65 2: eval->eval, Arg_0: Arg_0 {O(n)} 4.76/2.65 4.76/2.65 2: eval->eval, Arg_1: Arg_1 {O(n)} 4.76/2.65 4.76/2.65 4: start->eval, Arg_0: Arg_0 {O(n)} 4.76/2.65 4.76/2.65 4: start->eval, Arg_1: Arg_1 {O(n)} 4.76/2.65 4.76/2.65 4.76/2.65 ---------------------------------------- 4.76/2.65 4.76/2.65 (2) 4.76/2.65 BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_0) + nat(2 * Arg_1)) 4.76/2.65 4.76/2.65 ---------------------------------------- 4.76/2.65 4.76/2.65 (3) Loat Proof (FINISHED) 4.76/2.65 4.76/2.65 4.76/2.65 ### Pre-processing the ITS problem ### 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Initial linear ITS problem 4.76/2.65 4.76/2.65 Start location: start 4.76/2.65 4.76/2.65 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 4.76/2.65 4.76/2.65 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 4.76/2.65 4.76/2.65 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=A && B>=1+A ], cost: 1 4.76/2.65 4.76/2.65 3: eval -> eval : B'=-1+B, [ A+B>=1 && B>=A && A>=1+B ], cost: 1 4.76/2.65 4.76/2.65 4: start -> eval : [], cost: 1 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Removed rules with unsatisfiable guard: 4.76/2.65 4.76/2.65 Start location: start 4.76/2.65 4.76/2.65 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 4.76/2.65 4.76/2.65 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 4.76/2.65 4.76/2.65 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=A && B>=1+A ], cost: 1 4.76/2.65 4.76/2.65 4: start -> eval : [], cost: 1 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Simplified all rules, resulting in: 4.76/2.65 4.76/2.65 Start location: start 4.76/2.65 4.76/2.65 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 4.76/2.65 4.76/2.65 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 4.76/2.65 4.76/2.65 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=1+A ], cost: 1 4.76/2.65 4.76/2.65 4: start -> eval : [], cost: 1 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 ### Simplification by acceleration and chaining ### 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Accelerating simple loops of location 0. 4.76/2.65 4.76/2.65 Accelerating the following rules: 4.76/2.65 4.76/2.65 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 4.76/2.65 4.76/2.65 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 4.76/2.65 4.76/2.65 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=1+A ], cost: 1 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Accelerated rule 0 with backward acceleration, yielding the new rule 5. 4.76/2.65 4.76/2.65 Accelerated rule 0 with backward acceleration, yielding the new rule 6. 4.76/2.65 4.76/2.65 Accelerated rule 1 with metering function A-B, yielding the new rule 7. 4.76/2.65 4.76/2.65 Accelerated rule 2 with backward acceleration, yielding the new rule 8. 4.76/2.65 4.76/2.65 Accelerated rule 2 with backward acceleration, yielding the new rule 9. 4.76/2.65 4.76/2.65 Removing the simple loops: 0 1 2. 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Accelerated all simple loops using metering functions (where possible): 4.76/2.65 4.76/2.65 Start location: start 4.76/2.65 4.76/2.65 5: eval -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: A+B 4.76/2.65 4.76/2.65 6: eval -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: A-B 4.76/2.65 4.76/2.65 7: eval -> eval : A'=B, [ 2*A>=1 && B==A && A-B>=1 ], cost: A-B 4.76/2.65 4.76/2.65 8: eval -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: A+B 4.76/2.65 4.76/2.65 9: eval -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: -A+B 4.76/2.65 4.76/2.65 4: start -> eval : [], cost: 1 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Chained accelerated rules (with incoming rules): 4.76/2.65 4.76/2.65 Start location: start 4.76/2.65 4.76/2.65 4: start -> eval : [], cost: 1 4.76/2.65 4.76/2.65 10: start -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: 1+A+B 4.76/2.65 4.76/2.65 11: start -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: 1+A-B 4.76/2.65 4.76/2.65 12: start -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: 1+A+B 4.76/2.65 4.76/2.65 13: start -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: 1-A+B 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Removed unreachable locations (and leaf rules with constant cost): 4.76/2.65 4.76/2.65 Start location: start 4.76/2.65 4.76/2.65 10: start -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: 1+A+B 4.76/2.65 4.76/2.65 11: start -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: 1+A-B 4.76/2.65 4.76/2.65 12: start -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: 1+A+B 4.76/2.65 4.76/2.65 13: start -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: 1-A+B 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 ### Computing asymptotic complexity ### 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Fully simplified ITS problem 4.76/2.65 4.76/2.65 Start location: start 4.76/2.65 4.76/2.65 10: start -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: 1+A+B 4.76/2.65 4.76/2.65 11: start -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: 1+A-B 4.76/2.65 4.76/2.65 12: start -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: 1+A+B 4.76/2.65 4.76/2.65 13: start -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: 1-A+B 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Computing asymptotic complexity for rule 10 4.76/2.65 4.76/2.65 Solved the limit problem by the following transformations: 4.76/2.65 4.76/2.65 Created initial limit problem: 4.76/2.65 4.76/2.65 1+A+B (+), A+B (+/+!), 1-2*B (+/+!), A-B (+/+!) [not solved] 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 removing all constraints (solved by SMT) 4.76/2.65 4.76/2.65 resulting limit problem: [solved] 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 applying transformation rule (C) using substitution {A==2*n,B==-n} 4.76/2.65 4.76/2.65 resulting limit problem: 4.76/2.65 4.76/2.65 [solved] 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Solution: 4.76/2.65 4.76/2.65 A / 2*n 4.76/2.65 4.76/2.65 B / -n 4.76/2.65 4.76/2.65 Resulting cost 1+n has complexity: Poly(n^1) 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Found new complexity Poly(n^1). 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 Obtained the following overall complexity (w.r.t. the length of the input n): 4.76/2.65 4.76/2.65 Complexity: Poly(n^1) 4.76/2.65 4.76/2.65 Cpx degree: 1 4.76/2.65 4.76/2.65 Solved cost: 1+n 4.76/2.65 4.76/2.65 Rule cost: 1+A+B 4.76/2.65 4.76/2.65 Rule guard: [ A+B>=1 && A>=1+B && 1-B>=1+B ] 4.76/2.65 4.76/2.65 4.76/2.65 4.76/2.65 WORST_CASE(Omega(n^1),?) 4.76/2.65 4.76/2.65 4.76/2.65 ---------------------------------------- 4.76/2.65 4.76/2.65 (4) 4.76/2.65 BOUNDS(n^1, INF) 4.76/2.69 EOF