4.63/2.36 WORST_CASE(Omega(n^1), O(n^1)) 4.63/2.37 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.63/2.37 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.63/2.37 4.63/2.37 4.63/2.37 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + 4 * Arg_1)). 4.63/2.37 4.63/2.37 (0) CpxIntTrs 4.63/2.37 (1) Koat2 Proof [FINISHED, 436 ms] 4.63/2.37 (2) BOUNDS(1, max(1, 1 + 4 * Arg_1)) 4.63/2.37 (3) Loat Proof [FINISHED, 820 ms] 4.63/2.37 (4) BOUNDS(n^1, INF) 4.63/2.37 4.63/2.37 4.63/2.37 ---------------------------------------- 4.63/2.37 4.63/2.37 (0) 4.63/2.37 Obligation: 4.63/2.37 Complexity Int TRS consisting of the following rules: 4.63/2.37 eval(A, B) -> Com_1(eval(A, A)) :|: 0 >= A && B >= 1 && B <= 1 4.63/2.37 eval(A, B) -> Com_1(eval(A, A)) :|: B >= 1 && 1 + B >= 0 && B >= A + 1 4.63/2.37 eval(A, B) -> Com_1(eval(A, 0)) :|: A >= 1 && B >= 1 && B <= 1 4.63/2.37 eval(A, B) -> Com_1(eval(A, B - 1)) :|: B >= 1 && 1 + B >= 0 && A >= B 4.63/2.37 start(A, B) -> Com_1(eval(A, B)) :|: TRUE 4.63/2.37 4.63/2.37 The start-symbols are:[start_2] 4.63/2.37 4.63/2.37 4.63/2.37 ---------------------------------------- 4.63/2.37 4.63/2.37 (1) Koat2 Proof (FINISHED) 4.63/2.37 YES( ?, 1+2*2*max([0, Arg_1]) {O(n)}) 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Initial Complexity Problem: 4.63/2.37 4.63/2.37 Start: start 4.63/2.37 4.63/2.37 Program_Vars: Arg_0, Arg_1 4.63/2.37 4.63/2.37 Temp_Vars: 4.63/2.37 4.63/2.37 Locations: eval, start 4.63/2.37 4.63/2.37 Transitions: 4.63/2.37 4.63/2.37 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_0):|:Arg_0 <= 0 && Arg_1 <= 1 && 1 <= Arg_1 4.63/2.37 4.63/2.37 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_0):|:1 <= Arg_1 && 0 <= 1+Arg_1 && Arg_0+1 <= Arg_1 4.63/2.37 4.63/2.37 eval(Arg_0,Arg_1) -> eval(Arg_0,0):|:1 <= Arg_0 && Arg_1 <= 1 && 1 <= Arg_1 4.63/2.37 4.63/2.37 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_1-1):|:1 <= Arg_1 && 0 <= 1+Arg_1 && Arg_1 <= Arg_0 4.63/2.37 4.63/2.37 start(Arg_0,Arg_1) -> eval(Arg_0,Arg_1):|: 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Timebounds: 4.63/2.37 4.63/2.37 Overall timebound: 1+2*2*max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 0: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 1: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 2: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 3: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 4: start->eval: 1 {O(1)} 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Costbounds: 4.63/2.37 4.63/2.37 Overall costbound: 1+2*2*max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 0: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 1: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 2: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 3: eval->eval: max([0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 4: start->eval: 1 {O(1)} 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Sizebounds: 4.63/2.37 4.63/2.37 `Lower: 4.63/2.37 4.63/2.37 0: eval->eval, Arg_0: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 0: eval->eval, Arg_1: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 1: eval->eval, Arg_0: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 1: eval->eval, Arg_1: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 2: eval->eval, Arg_0: 1 {O(1)} 4.63/2.37 4.63/2.37 2: eval->eval, Arg_1: 0 {O(1)} 4.63/2.37 4.63/2.37 3: eval->eval, Arg_0: 1 {O(1)} 4.63/2.37 4.63/2.37 3: eval->eval, Arg_1: 0 {O(1)} 4.63/2.37 4.63/2.37 4: start->eval, Arg_0: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 4: start->eval, Arg_1: Arg_1 {O(n)} 4.63/2.37 4.63/2.37 `Upper: 4.63/2.37 4.63/2.37 0: eval->eval, Arg_0: 0 {O(1)} 4.63/2.37 4.63/2.37 0: eval->eval, Arg_1: 0 {O(1)} 4.63/2.37 4.63/2.37 1: eval->eval, Arg_0: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 1: eval->eval, Arg_1: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 2: eval->eval, Arg_0: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 2: eval->eval, Arg_1: 0 {O(1)} 4.63/2.37 4.63/2.37 3: eval->eval, Arg_0: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 3: eval->eval, Arg_1: max([Arg_0, Arg_1]) {O(n)} 4.63/2.37 4.63/2.37 4: start->eval, Arg_0: Arg_0 {O(n)} 4.63/2.37 4.63/2.37 4: start->eval, Arg_1: Arg_1 {O(n)} 4.63/2.37 4.63/2.37 4.63/2.37 ---------------------------------------- 4.63/2.37 4.63/2.37 (2) 4.63/2.37 BOUNDS(1, max(1, 1 + 4 * Arg_1)) 4.63/2.37 4.63/2.37 ---------------------------------------- 4.63/2.37 4.63/2.37 (3) Loat Proof (FINISHED) 4.63/2.37 4.63/2.37 4.63/2.37 ### Pre-processing the ITS problem ### 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Initial linear ITS problem 4.63/2.37 4.63/2.37 Start location: start 4.63/2.37 4.63/2.37 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 4.63/2.37 4.63/2.37 1: eval -> eval : B'=A, [ B>=1 && 1+B>=0 && B>=1+A ], cost: 1 4.63/2.37 4.63/2.37 2: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: 1 4.63/2.37 4.63/2.37 3: eval -> eval : B'=-1+B, [ B>=1 && 1+B>=0 && A>=B ], cost: 1 4.63/2.37 4.63/2.37 4: start -> eval : [], cost: 1 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Simplified all rules, resulting in: 4.63/2.37 4.63/2.37 Start location: start 4.63/2.37 4.63/2.37 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 4.63/2.37 4.63/2.37 1: eval -> eval : B'=A, [ B>=1 && B>=1+A ], cost: 1 4.63/2.37 4.63/2.37 2: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: 1 4.63/2.37 4.63/2.37 3: eval -> eval : B'=-1+B, [ B>=1 && A>=B ], cost: 1 4.63/2.37 4.63/2.37 4: start -> eval : [], cost: 1 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 ### Simplification by acceleration and chaining ### 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Accelerating simple loops of location 0. 4.63/2.37 4.63/2.37 Accelerating the following rules: 4.63/2.37 4.63/2.37 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 4.63/2.37 4.63/2.37 1: eval -> eval : B'=A, [ B>=1 && B>=1+A ], cost: 1 4.63/2.37 4.63/2.37 2: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: 1 4.63/2.37 4.63/2.37 3: eval -> eval : B'=-1+B, [ B>=1 && A>=B ], cost: 1 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Accelerated rule 0 with NONTERM (after strengthening guard), yielding the new rule 5. 4.63/2.37 4.63/2.37 Found no metering function for rule 1. 4.63/2.37 4.63/2.37 Accelerated rule 2 with metering function B, yielding the new rule 6. 4.63/2.37 4.63/2.37 Accelerated rule 3 with metering function B, yielding the new rule 7. 4.63/2.37 4.63/2.37 Nested simple loops 1 (outer loop) and 6 (inner loop) with metering function 1-A, resulting in the new rules: 8. 4.63/2.37 4.63/2.37 Removing the simple loops: 1 2 3. 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Accelerated all simple loops using metering functions (where possible): 4.63/2.37 4.63/2.37 Start location: start 4.63/2.37 4.63/2.37 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 4.63/2.37 4.63/2.37 5: eval -> [2] : [ 0>=A && B==1 && A==1 ], cost: INF 4.63/2.37 4.63/2.37 6: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: B 4.63/2.37 4.63/2.37 7: eval -> eval : B'=0, [ B>=1 && A>=B ], cost: B 4.63/2.37 4.63/2.37 8: eval -> eval : B'=0, [ B>=1 && B>=1+A && A==1 && 1-A>=1 ], cost: 1-(-1+A)*A-A 4.63/2.37 4.63/2.37 4: start -> eval : [], cost: 1 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Chained accelerated rules (with incoming rules): 4.63/2.37 4.63/2.37 Start location: start 4.63/2.37 4.63/2.37 4: start -> eval : [], cost: 1 4.63/2.37 4.63/2.37 9: start -> eval : B'=A, [ 0>=A && B==1 ], cost: 2 4.63/2.37 4.63/2.37 10: start -> eval : B'=0, [ A>=1 && B==1 ], cost: 1+B 4.63/2.37 4.63/2.37 11: start -> eval : B'=0, [ B>=1 && A>=B ], cost: 1+B 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Removed unreachable locations (and leaf rules with constant cost): 4.63/2.37 4.63/2.37 Start location: start 4.63/2.37 4.63/2.37 10: start -> eval : B'=0, [ A>=1 && B==1 ], cost: 1+B 4.63/2.37 4.63/2.37 11: start -> eval : B'=0, [ B>=1 && A>=B ], cost: 1+B 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 ### Computing asymptotic complexity ### 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Fully simplified ITS problem 4.63/2.37 4.63/2.37 Start location: start 4.63/2.37 4.63/2.37 10: start -> eval : B'=0, [ A>=1 && B==1 ], cost: 1+B 4.63/2.37 4.63/2.37 11: start -> eval : B'=0, [ B>=1 && A>=B ], cost: 1+B 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Computing asymptotic complexity for rule 10 4.63/2.37 4.63/2.37 Could not solve the limit problem. 4.63/2.37 4.63/2.37 Resulting cost 0 has complexity: Unknown 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Computing asymptotic complexity for rule 11 4.63/2.37 4.63/2.37 Solved the limit problem by the following transformations: 4.63/2.37 4.63/2.37 Created initial limit problem: 4.63/2.37 4.63/2.37 1+B (+), 1+A-B (+/+!), B (+/+!) [not solved] 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 removing all constraints (solved by SMT) 4.63/2.37 4.63/2.37 resulting limit problem: [solved] 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 applying transformation rule (C) using substitution {A==n,B==n} 4.63/2.37 4.63/2.37 resulting limit problem: 4.63/2.37 4.63/2.37 [solved] 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Solution: 4.63/2.37 4.63/2.37 A / n 4.63/2.37 4.63/2.37 B / n 4.63/2.37 4.63/2.37 Resulting cost 1+n has complexity: Poly(n^1) 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Found new complexity Poly(n^1). 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 Obtained the following overall complexity (w.r.t. the length of the input n): 4.63/2.37 4.63/2.37 Complexity: Poly(n^1) 4.63/2.37 4.63/2.37 Cpx degree: 1 4.63/2.37 4.63/2.37 Solved cost: 1+n 4.63/2.37 4.63/2.37 Rule cost: 1+B 4.63/2.37 4.63/2.37 Rule guard: [ B>=1 && A>=B ] 4.63/2.37 4.63/2.37 4.63/2.37 4.63/2.37 WORST_CASE(Omega(n^1),?) 4.63/2.37 4.63/2.37 4.63/2.37 ---------------------------------------- 4.63/2.37 4.63/2.37 (4) 4.63/2.37 BOUNDS(n^1, INF) 4.63/2.39 EOF