4.04/1.96 WORST_CASE(Omega(n^1), O(n^1)) 4.04/1.97 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.04/1.97 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.04/1.97 4.04/1.97 4.04/1.97 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + 2 * Arg_0) + nat(Arg_0)). 4.04/1.97 4.04/1.97 (0) CpxIntTrs 4.04/1.97 (1) Koat2 Proof [FINISHED, 216 ms] 4.04/1.97 (2) BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_0)) 4.04/1.97 (3) Loat Proof [FINISHED, 307 ms] 4.04/1.97 (4) BOUNDS(n^1, INF) 4.04/1.97 4.04/1.97 4.04/1.97 ---------------------------------------- 4.04/1.97 4.04/1.97 (0) 4.04/1.97 Obligation: 4.04/1.97 Complexity Int TRS consisting of the following rules: 4.04/1.97 eval1(A, B) -> Com_1(eval2(A, B)) :|: A >= 1 && B >= A && B <= A 4.04/1.97 eval2(A, B) -> Com_1(eval2(A - 1, B - 1)) :|: A >= 1 4.04/1.97 eval2(A, B) -> Com_1(eval1(A, B)) :|: 0 >= A 4.04/1.97 start(A, B) -> Com_1(eval1(A, B)) :|: TRUE 4.04/1.97 4.04/1.97 The start-symbols are:[start_2] 4.04/1.97 4.04/1.97 4.04/1.97 ---------------------------------------- 4.04/1.97 4.04/1.97 (1) Koat2 Proof (FINISHED) 4.04/1.97 YES( ?, 1+2*max([0, Arg_0])+max([0, Arg_0]) {O(n)}) 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Initial Complexity Problem: 4.04/1.97 4.04/1.97 Start: start 4.04/1.97 4.04/1.97 Program_Vars: Arg_0, Arg_1 4.04/1.97 4.04/1.97 Temp_Vars: 4.04/1.97 4.04/1.97 Locations: eval1, eval2, start 4.04/1.97 4.04/1.97 Transitions: 4.04/1.97 4.04/1.97 eval1(Arg_0,Arg_1) -> eval2(Arg_0,Arg_1):|:1 <= Arg_0 && Arg_1 <= Arg_0 && Arg_0 <= Arg_1 4.04/1.97 4.04/1.97 eval2(Arg_0,Arg_1) -> eval1(Arg_0,Arg_1):|:Arg_1 <= Arg_0 && Arg_0 <= Arg_1 && Arg_0 <= 0 4.04/1.97 4.04/1.97 eval2(Arg_0,Arg_1) -> eval2(Arg_0-1,Arg_1-1):|:Arg_1 <= Arg_0 && Arg_0 <= Arg_1 && 1 <= Arg_0 4.04/1.97 4.04/1.97 start(Arg_0,Arg_1) -> eval1(Arg_0,Arg_1):|: 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Timebounds: 4.04/1.97 4.04/1.97 Overall timebound: 1+2*max([0, Arg_0])+max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 0: eval1->eval2: max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 1: eval2->eval2: max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 2: eval2->eval1: max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 3: start->eval1: 1 {O(1)} 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Costbounds: 4.04/1.97 4.04/1.97 Overall costbound: 1+2*max([0, Arg_0])+max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 0: eval1->eval2: max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 1: eval2->eval2: max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 2: eval2->eval1: max([0, Arg_0]) {O(n)} 4.04/1.97 4.04/1.97 3: start->eval1: 1 {O(1)} 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Sizebounds: 4.04/1.97 4.04/1.97 `Lower: 4.04/1.97 4.04/1.97 0: eval1->eval2, Arg_0: 1 {O(1)} 4.04/1.97 4.04/1.97 0: eval1->eval2, Arg_1: 1 {O(1)} 4.04/1.97 4.04/1.97 1: eval2->eval2, Arg_0: 0 {O(1)} 4.04/1.97 4.04/1.97 1: eval2->eval2, Arg_1: 0 {O(1)} 4.04/1.97 4.04/1.97 2: eval2->eval1, Arg_0: 0 {O(1)} 4.04/1.97 4.04/1.97 2: eval2->eval1, Arg_1: 0 {O(1)} 4.04/1.97 4.04/1.97 3: start->eval1, Arg_0: Arg_0 {O(n)} 4.04/1.97 4.04/1.97 3: start->eval1, Arg_1: Arg_1 {O(n)} 4.04/1.97 4.04/1.97 `Upper: 4.04/1.97 4.04/1.97 0: eval1->eval2, Arg_0: Arg_0 {O(n)} 4.04/1.97 4.04/1.97 0: eval1->eval2, Arg_1: Arg_1 {O(n)} 4.04/1.97 4.04/1.97 1: eval2->eval2, Arg_0: Arg_0 {O(n)} 4.04/1.97 4.04/1.97 1: eval2->eval2, Arg_1: Arg_1 {O(n)} 4.04/1.97 4.04/1.97 2: eval2->eval1, Arg_0: 0 {O(1)} 4.04/1.97 4.04/1.97 2: eval2->eval1, Arg_1: 0 {O(1)} 4.04/1.97 4.04/1.97 3: start->eval1, Arg_0: Arg_0 {O(n)} 4.04/1.97 4.04/1.97 3: start->eval1, Arg_1: Arg_1 {O(n)} 4.04/1.97 4.04/1.97 4.04/1.97 ---------------------------------------- 4.04/1.97 4.04/1.97 (2) 4.04/1.97 BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_0)) 4.04/1.97 4.04/1.97 ---------------------------------------- 4.04/1.97 4.04/1.97 (3) Loat Proof (FINISHED) 4.04/1.97 4.04/1.97 4.04/1.97 ### Pre-processing the ITS problem ### 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Initial linear ITS problem 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 0: eval1 -> eval2 : [ A>=1 && B==A ], cost: 1 4.04/1.97 4.04/1.97 1: eval2 -> eval2 : A'=-1+A, B'=-1+B, [ A>=1 ], cost: 1 4.04/1.97 4.04/1.97 2: eval2 -> eval1 : [ 0>=A ], cost: 1 4.04/1.97 4.04/1.97 3: start -> eval1 : [], cost: 1 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 ### Simplification by acceleration and chaining ### 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Accelerating simple loops of location 1. 4.04/1.97 4.04/1.97 Accelerating the following rules: 4.04/1.97 4.04/1.97 1: eval2 -> eval2 : A'=-1+A, B'=-1+B, [ A>=1 ], cost: 1 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Accelerated rule 1 with metering function A, yielding the new rule 4. 4.04/1.97 4.04/1.97 Removing the simple loops: 1. 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Accelerated all simple loops using metering functions (where possible): 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 0: eval1 -> eval2 : [ A>=1 && B==A ], cost: 1 4.04/1.97 4.04/1.97 2: eval2 -> eval1 : [ 0>=A ], cost: 1 4.04/1.97 4.04/1.97 4: eval2 -> eval2 : A'=0, B'=-A+B, [ A>=1 ], cost: A 4.04/1.97 4.04/1.97 3: start -> eval1 : [], cost: 1 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Chained accelerated rules (with incoming rules): 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 0: eval1 -> eval2 : [ A>=1 && B==A ], cost: 1 4.04/1.97 4.04/1.97 5: eval1 -> eval2 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 1+A 4.04/1.97 4.04/1.97 2: eval2 -> eval1 : [ 0>=A ], cost: 1 4.04/1.97 4.04/1.97 3: start -> eval1 : [], cost: 1 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Eliminated locations (on tree-shaped paths): 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 6: eval1 -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 2+A 4.04/1.97 4.04/1.97 3: start -> eval1 : [], cost: 1 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Accelerating simple loops of location 0. 4.04/1.97 4.04/1.97 Accelerating the following rules: 4.04/1.97 4.04/1.97 6: eval1 -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 2+A 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Found no metering function for rule 6. 4.04/1.97 4.04/1.97 Removing the simple loops:. 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Accelerated all simple loops using metering functions (where possible): 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 6: eval1 -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 2+A 4.04/1.97 4.04/1.97 3: start -> eval1 : [], cost: 1 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Chained accelerated rules (with incoming rules): 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 3: start -> eval1 : [], cost: 1 4.04/1.97 4.04/1.97 7: start -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 3+A 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Removed unreachable locations (and leaf rules with constant cost): 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 7: start -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 3+A 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 ### Computing asymptotic complexity ### 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Fully simplified ITS problem 4.04/1.97 4.04/1.97 Start location: start 4.04/1.97 4.04/1.97 7: start -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 3+A 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Computing asymptotic complexity for rule 7 4.04/1.97 4.04/1.97 Solved the limit problem by the following transformations: 4.04/1.97 4.04/1.97 Created initial limit problem: 4.04/1.97 4.04/1.97 3+A (+), A (+/+!), 1-A+B (+/+!), 1+A-B (+/+!) [not solved] 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 applying transformation rule (C) using substitution {A==B} 4.04/1.97 4.04/1.97 resulting limit problem: 4.04/1.97 4.04/1.97 3+B (+), 1 (+/+!), B (+/+!) [not solved] 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 applying transformation rule (B), deleting 1 (+/+!) 4.04/1.97 4.04/1.97 resulting limit problem: 4.04/1.97 4.04/1.97 3+B (+), B (+/+!) [not solved] 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 applying transformation rule (D), replacing 3+B (+) by B (+) 4.04/1.97 4.04/1.97 resulting limit problem: 4.04/1.97 4.04/1.97 B (+) [solved] 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Solution: 4.04/1.97 4.04/1.97 A / n 4.04/1.97 4.04/1.97 B / n 4.04/1.97 4.04/1.97 Resulting cost 3+n has complexity: Poly(n^1) 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Found new complexity Poly(n^1). 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 Obtained the following overall complexity (w.r.t. the length of the input n): 4.04/1.97 4.04/1.97 Complexity: Poly(n^1) 4.04/1.97 4.04/1.97 Cpx degree: 1 4.04/1.97 4.04/1.97 Solved cost: 3+n 4.04/1.97 4.04/1.97 Rule cost: 3+A 4.04/1.97 4.04/1.97 Rule guard: [ A>=1 && B==A ] 4.04/1.97 4.04/1.97 4.04/1.97 4.04/1.97 WORST_CASE(Omega(n^1),?) 4.04/1.97 4.04/1.97 4.04/1.97 ---------------------------------------- 4.04/1.97 4.04/1.97 (4) 4.04/1.97 BOUNDS(n^1, INF) 4.14/1.99 EOF