4.74/2.33 WORST_CASE(Omega(n^1), O(n^1)) 4.74/2.34 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.74/2.34 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.74/2.34 4.74/2.34 4.74/2.34 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + 2 * Arg_0 + -2 * Arg_1) + nat(-2 * Arg_1 + 2 * Arg_2)). 4.74/2.34 4.74/2.34 (0) CpxIntTrs 4.74/2.34 (1) Koat2 Proof [FINISHED, 394 ms] 4.74/2.34 (2) BOUNDS(1, max(1, 1 + 2 * Arg_0 + -2 * Arg_1) + nat(-2 * Arg_1 + 2 * Arg_2)) 4.74/2.34 (3) Loat Proof [FINISHED, 595 ms] 4.74/2.34 (4) BOUNDS(n^1, INF) 4.74/2.34 4.74/2.34 4.74/2.34 ---------------------------------------- 4.74/2.34 4.74/2.34 (0) 4.74/2.34 Obligation: 4.74/2.34 Complexity Int TRS consisting of the following rules: 4.74/2.34 eval(A, B, C) -> Com_1(eval(A - 1, B, C)) :|: A >= B + 1 4.74/2.34 eval(A, B, C) -> Com_1(eval(A - 1, B, C)) :|: C >= B + 1 && A >= B + 1 4.74/2.34 eval(A, B, C) -> Com_1(eval(A, B, C - 1)) :|: A >= B + 1 && B >= A && C >= B + 1 4.74/2.34 eval(A, B, C) -> Com_1(eval(A, B, C - 1)) :|: C >= B + 1 && B >= A 4.74/2.34 eval(A, B, C) -> Com_1(eval(A, B, C)) :|: A >= B + 1 && B >= A && B >= C 4.74/2.34 eval(A, B, C) -> Com_1(eval(A, B, C)) :|: C >= B + 1 && B >= A && B >= C 4.74/2.34 start(A, B, C) -> Com_1(eval(A, B, C)) :|: TRUE 4.74/2.34 4.74/2.34 The start-symbols are:[start_3] 4.74/2.34 4.74/2.34 4.74/2.34 ---------------------------------------- 4.74/2.34 4.74/2.34 (1) Koat2 Proof (FINISHED) 4.74/2.34 YES( ?, 1+2*max([0, Arg_0-Arg_1])+max([0, -2*Arg_1+2*Arg_2]) {O(n)}) 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Initial Complexity Problem: 4.74/2.34 4.74/2.34 Start: start 4.74/2.34 4.74/2.34 Program_Vars: Arg_0, Arg_1, Arg_2 4.74/2.34 4.74/2.34 Temp_Vars: 4.74/2.34 4.74/2.34 Locations: eval, start 4.74/2.34 4.74/2.34 Transitions: 4.74/2.34 4.74/2.34 eval(Arg_0,Arg_1,Arg_2) -> eval(Arg_0-1,Arg_1,Arg_2):|:Arg_1+1 <= Arg_0 4.74/2.34 4.74/2.34 eval(Arg_0,Arg_1,Arg_2) -> eval(Arg_0-1,Arg_1,Arg_2):|:Arg_1+1 <= Arg_2 && Arg_1+1 <= Arg_0 4.74/2.34 4.74/2.34 eval(Arg_0,Arg_1,Arg_2) -> eval(Arg_0,Arg_1,Arg_2-1):|:Arg_1+1 <= Arg_2 && Arg_0 <= Arg_1 4.74/2.34 4.74/2.34 start(Arg_0,Arg_1,Arg_2) -> eval(Arg_0,Arg_1,Arg_2):|: 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Timebounds: 4.74/2.34 4.74/2.34 Overall timebound: 1+2*max([0, Arg_0-Arg_1])+max([0, -2*Arg_1+2*Arg_2]) {O(n)} 4.74/2.34 4.74/2.34 0: eval->eval: max([0, Arg_0-Arg_1]) {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval: max([0, Arg_0-Arg_1]) {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval: max([0, -2*Arg_1+2*Arg_2]) {O(n)} 4.74/2.34 4.74/2.34 6: start->eval: 1 {O(1)} 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Costbounds: 4.74/2.34 4.74/2.34 Overall costbound: 1+2*max([0, Arg_0-Arg_1])+max([0, -2*Arg_1+2*Arg_2]) {O(n)} 4.74/2.34 4.74/2.34 0: eval->eval: max([0, Arg_0-Arg_1]) {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval: max([0, Arg_0-Arg_1]) {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval: max([0, -2*Arg_1+2*Arg_2]) {O(n)} 4.74/2.34 4.74/2.34 6: start->eval: 1 {O(1)} 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Sizebounds: 4.74/2.34 4.74/2.34 `Lower: 4.74/2.34 4.74/2.34 0: eval->eval, Arg_0: Arg_0+-2*max([0, Arg_0-Arg_1]) {O(n)} 4.74/2.34 4.74/2.34 0: eval->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 0: eval->eval, Arg_2: Arg_2 {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval, Arg_0: Arg_0+-2*max([0, Arg_0-Arg_1]) {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval, Arg_2: Arg_2 {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval, Arg_0: min([Arg_0, -(-(Arg_0)+2*max([0, Arg_0-Arg_1]))]) {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval, Arg_2: Arg_2-max([0, -2*Arg_1+2*Arg_2]) {O(n)} 4.74/2.34 4.74/2.34 6: start->eval, Arg_0: Arg_0 {O(n)} 4.74/2.34 4.74/2.34 6: start->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 6: start->eval, Arg_2: Arg_2 {O(n)} 4.74/2.34 4.74/2.34 `Upper: 4.74/2.34 4.74/2.34 0: eval->eval, Arg_0: Arg_0 {O(n)} 4.74/2.34 4.74/2.34 0: eval->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 0: eval->eval, Arg_2: Arg_2 {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval, Arg_0: Arg_0 {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 1: eval->eval, Arg_2: Arg_2 {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval, Arg_0: Arg_0 {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 3: eval->eval, Arg_2: Arg_2 {O(n)} 4.74/2.34 4.74/2.34 6: start->eval, Arg_0: Arg_0 {O(n)} 4.74/2.34 4.74/2.34 6: start->eval, Arg_1: Arg_1 {O(n)} 4.74/2.34 4.74/2.34 6: start->eval, Arg_2: Arg_2 {O(n)} 4.74/2.34 4.74/2.34 4.74/2.34 ---------------------------------------- 4.74/2.34 4.74/2.34 (2) 4.74/2.34 BOUNDS(1, max(1, 1 + 2 * Arg_0 + -2 * Arg_1) + nat(-2 * Arg_1 + 2 * Arg_2)) 4.74/2.34 4.74/2.34 ---------------------------------------- 4.74/2.34 4.74/2.34 (3) Loat Proof (FINISHED) 4.74/2.34 4.74/2.34 4.74/2.34 ### Pre-processing the ITS problem ### 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Initial linear ITS problem 4.74/2.34 4.74/2.34 Start location: start 4.74/2.34 4.74/2.34 0: eval -> eval : A'=-1+A, [ A>=1+B ], cost: 1 4.74/2.34 4.74/2.34 1: eval -> eval : A'=-1+A, [ C>=1+B && A>=1+B ], cost: 1 4.74/2.34 4.74/2.34 2: eval -> eval : C'=-1+C, [ A>=1+B && B>=A && C>=1+B ], cost: 1 4.74/2.34 4.74/2.34 3: eval -> eval : C'=-1+C, [ C>=1+B && B>=A ], cost: 1 4.74/2.34 4.74/2.34 4: eval -> eval : [ A>=1+B && B>=A && B>=C ], cost: 1 4.74/2.34 4.74/2.34 5: eval -> eval : [ C>=1+B && B>=A && B>=C ], cost: 1 4.74/2.34 4.74/2.34 6: start -> eval : [], cost: 1 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Removed rules with unsatisfiable guard: 4.74/2.34 4.74/2.34 Start location: start 4.74/2.34 4.74/2.34 0: eval -> eval : A'=-1+A, [ A>=1+B ], cost: 1 4.74/2.34 4.74/2.34 1: eval -> eval : A'=-1+A, [ C>=1+B && A>=1+B ], cost: 1 4.74/2.34 4.74/2.34 3: eval -> eval : C'=-1+C, [ C>=1+B && B>=A ], cost: 1 4.74/2.34 4.74/2.34 6: start -> eval : [], cost: 1 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 ### Simplification by acceleration and chaining ### 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Accelerating simple loops of location 0. 4.74/2.34 4.74/2.34 Accelerating the following rules: 4.74/2.34 4.74/2.34 0: eval -> eval : A'=-1+A, [ A>=1+B ], cost: 1 4.74/2.34 4.74/2.34 1: eval -> eval : A'=-1+A, [ C>=1+B && A>=1+B ], cost: 1 4.74/2.34 4.74/2.34 3: eval -> eval : C'=-1+C, [ C>=1+B && B>=A ], cost: 1 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Accelerated rule 0 with metering function A-B, yielding the new rule 7. 4.74/2.34 4.74/2.34 Accelerated rule 1 with metering function A-B, yielding the new rule 8. 4.74/2.34 4.74/2.34 Accelerated rule 3 with metering function C-B, yielding the new rule 9. 4.74/2.34 4.74/2.34 Removing the simple loops: 0 1 3. 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Accelerated all simple loops using metering functions (where possible): 4.74/2.34 4.74/2.34 Start location: start 4.74/2.34 4.74/2.34 7: eval -> eval : A'=B, [ A>=1+B ], cost: A-B 4.74/2.34 4.74/2.34 8: eval -> eval : A'=B, [ C>=1+B && A>=1+B ], cost: A-B 4.74/2.34 4.74/2.34 9: eval -> eval : C'=B, [ C>=1+B && B>=A ], cost: C-B 4.74/2.34 4.74/2.34 6: start -> eval : [], cost: 1 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Chained accelerated rules (with incoming rules): 4.74/2.34 4.74/2.34 Start location: start 4.74/2.34 4.74/2.34 6: start -> eval : [], cost: 1 4.74/2.34 4.74/2.34 10: start -> eval : A'=B, [ A>=1+B ], cost: 1+A-B 4.74/2.34 4.74/2.34 11: start -> eval : A'=B, [ C>=1+B && A>=1+B ], cost: 1+A-B 4.74/2.34 4.74/2.34 12: start -> eval : C'=B, [ C>=1+B && B>=A ], cost: 1+C-B 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Removed unreachable locations (and leaf rules with constant cost): 4.74/2.34 4.74/2.34 Start location: start 4.74/2.34 4.74/2.34 10: start -> eval : A'=B, [ A>=1+B ], cost: 1+A-B 4.74/2.34 4.74/2.34 11: start -> eval : A'=B, [ C>=1+B && A>=1+B ], cost: 1+A-B 4.74/2.34 4.74/2.34 12: start -> eval : C'=B, [ C>=1+B && B>=A ], cost: 1+C-B 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 ### Computing asymptotic complexity ### 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Fully simplified ITS problem 4.74/2.34 4.74/2.34 Start location: start 4.74/2.34 4.74/2.34 10: start -> eval : A'=B, [ A>=1+B ], cost: 1+A-B 4.74/2.34 4.74/2.34 11: start -> eval : A'=B, [ C>=1+B && A>=1+B ], cost: 1+A-B 4.74/2.34 4.74/2.34 12: start -> eval : C'=B, [ C>=1+B && B>=A ], cost: 1+C-B 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Computing asymptotic complexity for rule 10 4.74/2.34 4.74/2.34 Solved the limit problem by the following transformations: 4.74/2.34 4.74/2.34 Created initial limit problem: 4.74/2.34 4.74/2.34 1+A-B (+), A-B (+/+!) [not solved] 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 removing all constraints (solved by SMT) 4.74/2.34 4.74/2.34 resulting limit problem: [solved] 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 applying transformation rule (C) using substitution {A==0,B==-n} 4.74/2.34 4.74/2.34 resulting limit problem: 4.74/2.34 4.74/2.34 [solved] 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Solution: 4.74/2.34 4.74/2.34 A / 0 4.74/2.34 4.74/2.34 B / -n 4.74/2.34 4.74/2.34 Resulting cost 1+n has complexity: Poly(n^1) 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Found new complexity Poly(n^1). 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 Obtained the following overall complexity (w.r.t. the length of the input n): 4.74/2.34 4.74/2.34 Complexity: Poly(n^1) 4.74/2.34 4.74/2.34 Cpx degree: 1 4.74/2.34 4.74/2.34 Solved cost: 1+n 4.74/2.34 4.74/2.34 Rule cost: 1+A-B 4.74/2.34 4.74/2.34 Rule guard: [ A>=1+B ] 4.74/2.34 4.74/2.34 4.74/2.34 4.74/2.34 WORST_CASE(Omega(n^1),?) 4.74/2.34 4.74/2.34 4.74/2.34 ---------------------------------------- 4.74/2.34 4.74/2.34 (4) 4.74/2.34 BOUNDS(n^1, INF) 4.82/3.29 EOF