4.30/2.25 WORST_CASE(Omega(n^1), O(n^1)) 4.40/2.26 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.40/2.26 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.40/2.26 4.40/2.26 4.40/2.26 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_1) + nat(Arg_0)). 4.40/2.26 4.40/2.26 (0) CpxIntTrs 4.40/2.26 (1) Koat2 Proof [FINISHED, 128 ms] 4.40/2.26 (2) BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) 4.40/2.26 (3) Loat Proof [FINISHED, 609 ms] 4.40/2.26 (4) BOUNDS(n^1, INF) 4.40/2.26 4.40/2.26 4.40/2.26 ---------------------------------------- 4.40/2.26 4.40/2.26 (0) 4.40/2.26 Obligation: 4.40/2.26 Complexity Int TRS consisting of the following rules: 4.40/2.26 eval(A, B) -> Com_1(eval(A - 1, B)) :|: A + B >= 1 && A >= 1 4.40/2.26 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A + B >= 1 && 0 >= A && B >= 1 4.40/2.26 eval(A, B) -> Com_1(eval(A, B)) :|: A + B >= 1 && 0 >= A && 0 >= B 4.40/2.26 start(A, B) -> Com_1(eval(A, B)) :|: TRUE 4.40/2.26 4.40/2.26 The start-symbols are:[start_2] 4.40/2.26 4.40/2.26 4.40/2.26 ---------------------------------------- 4.40/2.26 4.40/2.26 (1) Koat2 Proof (FINISHED) 4.40/2.26 YES( ?, 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)}) 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Initial Complexity Problem: 4.40/2.26 4.40/2.26 Start: start 4.40/2.26 4.40/2.26 Program_Vars: Arg_0, Arg_1 4.40/2.26 4.40/2.26 Temp_Vars: 4.40/2.26 4.40/2.26 Locations: eval, start 4.40/2.26 4.40/2.26 Transitions: 4.40/2.26 4.40/2.26 eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1):|:1 <= Arg_0+Arg_1 && 1 <= Arg_0 4.40/2.26 4.40/2.26 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_1-1):|:1 <= Arg_0+Arg_1 && Arg_0 <= 0 && 1 <= Arg_1 4.40/2.26 4.40/2.26 start(Arg_0,Arg_1) -> eval(Arg_0,Arg_1):|: 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Timebounds: 4.40/2.26 4.40/2.26 Overall timebound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 4.40/2.26 4.40/2.26 0: eval->eval: max([0, Arg_0]) {O(n)} 4.40/2.26 4.40/2.26 1: eval->eval: max([0, Arg_1]) {O(n)} 4.40/2.26 4.40/2.26 3: start->eval: 1 {O(1)} 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Costbounds: 4.40/2.26 4.40/2.26 Overall costbound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 4.40/2.26 4.40/2.26 0: eval->eval: max([0, Arg_0]) {O(n)} 4.40/2.26 4.40/2.26 1: eval->eval: max([0, Arg_1]) {O(n)} 4.40/2.26 4.40/2.26 3: start->eval: 1 {O(1)} 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Sizebounds: 4.40/2.26 4.40/2.26 `Lower: 4.40/2.26 4.40/2.26 0: eval->eval, Arg_0: 0 {O(1)} 4.40/2.26 4.40/2.26 0: eval->eval, Arg_1: Arg_1 {O(n)} 4.40/2.26 4.40/2.26 1: eval->eval, Arg_0: min([0, Arg_0]) {O(n)} 4.40/2.26 4.40/2.26 1: eval->eval, Arg_1: 0 {O(1)} 4.40/2.26 4.40/2.26 3: start->eval, Arg_0: Arg_0 {O(n)} 4.40/2.26 4.40/2.26 3: start->eval, Arg_1: Arg_1 {O(n)} 4.40/2.26 4.40/2.26 `Upper: 4.40/2.26 4.40/2.26 0: eval->eval, Arg_0: Arg_0 {O(n)} 4.40/2.26 4.40/2.26 0: eval->eval, Arg_1: Arg_1 {O(n)} 4.40/2.26 4.40/2.26 1: eval->eval, Arg_0: 0 {O(1)} 4.40/2.26 4.40/2.26 1: eval->eval, Arg_1: Arg_1 {O(n)} 4.40/2.26 4.40/2.26 3: start->eval, Arg_0: Arg_0 {O(n)} 4.40/2.26 4.40/2.26 3: start->eval, Arg_1: Arg_1 {O(n)} 4.40/2.26 4.40/2.26 4.40/2.26 ---------------------------------------- 4.40/2.26 4.40/2.26 (2) 4.40/2.26 BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) 4.40/2.26 4.40/2.26 ---------------------------------------- 4.40/2.26 4.40/2.26 (3) Loat Proof (FINISHED) 4.40/2.26 4.40/2.26 4.40/2.26 ### Pre-processing the ITS problem ### 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Initial linear ITS problem 4.40/2.26 4.40/2.26 Start location: start 4.40/2.26 4.40/2.26 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1 ], cost: 1 4.40/2.26 4.40/2.26 1: eval -> eval : B'=-1+B, [ A+B>=1 && 0>=A && B>=1 ], cost: 1 4.40/2.26 4.40/2.26 2: eval -> eval : [ A+B>=1 && 0>=A && 0>=B ], cost: 1 4.40/2.26 4.40/2.26 3: start -> eval : [], cost: 1 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Removed rules with unsatisfiable guard: 4.40/2.26 4.40/2.26 Start location: start 4.40/2.26 4.40/2.26 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1 ], cost: 1 4.40/2.26 4.40/2.26 1: eval -> eval : B'=-1+B, [ A+B>=1 && 0>=A && B>=1 ], cost: 1 4.40/2.26 4.40/2.26 3: start -> eval : [], cost: 1 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 ### Simplification by acceleration and chaining ### 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Accelerating simple loops of location 0. 4.40/2.26 4.40/2.26 Accelerating the following rules: 4.40/2.26 4.40/2.26 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1 ], cost: 1 4.40/2.26 4.40/2.26 1: eval -> eval : B'=-1+B, [ A+B>=1 && 0>=A ], cost: 1 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Accelerated rule 0 with backward acceleration, yielding the new rule 4. 4.40/2.26 4.40/2.26 Accelerated rule 0 with backward acceleration, yielding the new rule 5. 4.40/2.26 4.40/2.26 Accelerated rule 1 with metering function A+B, yielding the new rule 6. 4.40/2.26 4.40/2.26 Removing the simple loops: 0 1. 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Accelerated all simple loops using metering functions (where possible): 4.40/2.26 4.40/2.26 Start location: start 4.40/2.26 4.40/2.26 4: eval -> eval : A'=-B, [ A+B>=1 && A>=1 && 1-B>=1 ], cost: A+B 4.40/2.26 4.40/2.26 5: eval -> eval : A'=0, [ A+B>=1 && A>=1 && 1+B>=1 ], cost: A 4.40/2.26 4.40/2.26 6: eval -> eval : B'=-A, [ A+B>=1 && 0>=A ], cost: A+B 4.40/2.26 4.40/2.26 3: start -> eval : [], cost: 1 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Chained accelerated rules (with incoming rules): 4.40/2.26 4.40/2.26 Start location: start 4.40/2.26 4.40/2.26 3: start -> eval : [], cost: 1 4.40/2.26 4.40/2.26 7: start -> eval : A'=-B, [ A+B>=1 && A>=1 && 1-B>=1 ], cost: 1+A+B 4.40/2.26 4.40/2.26 8: start -> eval : A'=0, [ A+B>=1 && A>=1 && 1+B>=1 ], cost: 1+A 4.40/2.26 4.40/2.26 9: start -> eval : B'=-A, [ A+B>=1 && 0>=A ], cost: 1+A+B 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Removed unreachable locations (and leaf rules with constant cost): 4.40/2.26 4.40/2.26 Start location: start 4.40/2.26 4.40/2.26 7: start -> eval : A'=-B, [ A+B>=1 && A>=1 && 1-B>=1 ], cost: 1+A+B 4.40/2.26 4.40/2.26 8: start -> eval : A'=0, [ A+B>=1 && A>=1 && 1+B>=1 ], cost: 1+A 4.40/2.26 4.40/2.26 9: start -> eval : B'=-A, [ A+B>=1 && 0>=A ], cost: 1+A+B 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 ### Computing asymptotic complexity ### 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Fully simplified ITS problem 4.40/2.26 4.40/2.26 Start location: start 4.40/2.26 4.40/2.26 7: start -> eval : A'=-B, [ A+B>=1 && A>=1 && 1-B>=1 ], cost: 1+A+B 4.40/2.26 4.40/2.26 8: start -> eval : A'=0, [ A+B>=1 && A>=1 && 1+B>=1 ], cost: 1+A 4.40/2.26 4.40/2.26 9: start -> eval : B'=-A, [ A+B>=1 && 0>=A ], cost: 1+A+B 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Computing asymptotic complexity for rule 7 4.40/2.26 4.40/2.26 Solved the limit problem by the following transformations: 4.40/2.26 4.40/2.26 Created initial limit problem: 4.40/2.26 4.40/2.26 1+A+B (+), A+B (+/+!), 1-B (+/+!), A (+/+!) [not solved] 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 removing all constraints (solved by SMT) 4.40/2.26 4.40/2.26 resulting limit problem: [solved] 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 applying transformation rule (C) using substitution {A==2*n,B==-n} 4.40/2.26 4.40/2.26 resulting limit problem: 4.40/2.26 4.40/2.26 [solved] 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Solution: 4.40/2.26 4.40/2.26 A / 2*n 4.40/2.26 4.40/2.26 B / -n 4.40/2.26 4.40/2.26 Resulting cost 1+n has complexity: Poly(n^1) 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Found new complexity Poly(n^1). 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 Obtained the following overall complexity (w.r.t. the length of the input n): 4.40/2.26 4.40/2.26 Complexity: Poly(n^1) 4.40/2.26 4.40/2.26 Cpx degree: 1 4.40/2.26 4.40/2.26 Solved cost: 1+n 4.40/2.26 4.40/2.26 Rule cost: 1+A+B 4.40/2.26 4.40/2.26 Rule guard: [ A+B>=1 && A>=1 && 1-B>=1 ] 4.40/2.26 4.40/2.26 4.40/2.26 4.40/2.26 WORST_CASE(Omega(n^1),?) 4.40/2.26 4.40/2.26 4.40/2.26 ---------------------------------------- 4.40/2.26 4.40/2.26 (4) 4.40/2.26 BOUNDS(n^1, INF) 4.40/2.28 EOF