5.19/2.62 WORST_CASE(Omega(n^1), ?) 5.23/2.63 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 5.23/2.63 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.23/2.63 5.23/2.63 5.23/2.63 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, INF). 5.23/2.63 5.23/2.63 (0) CpxIntTrs 5.23/2.63 (1) Loat Proof [FINISHED, 522 ms] 5.23/2.63 (2) BOUNDS(n^1, INF) 5.23/2.63 5.23/2.63 5.23/2.63 ---------------------------------------- 5.23/2.63 5.23/2.63 (0) 5.23/2.63 Obligation: 5.23/2.63 Complexity Int TRS consisting of the following rules: 5.23/2.63 ack(A, B) -> Com_1(ack(A - 1, C)) :|: A >= 1 && B >= 1 5.23/2.63 ack(A, B) -> Com_1(ack(A, B - 1)) :|: A >= 1 && B >= 1 5.23/2.63 start(A, B) -> Com_1(ack(A, B)) :|: TRUE 5.23/2.63 5.23/2.63 The start-symbols are:[start_2] 5.23/2.63 5.23/2.63 5.23/2.63 ---------------------------------------- 5.23/2.63 5.23/2.63 (1) Loat Proof (FINISHED) 5.23/2.63 5.23/2.63 5.23/2.63 ### Pre-processing the ITS problem ### 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Initial linear ITS problem 5.23/2.63 5.23/2.63 Start location: start 5.23/2.63 5.23/2.63 0: ack -> ack : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 1 5.23/2.63 5.23/2.63 1: ack -> ack : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 5.23/2.63 5.23/2.63 2: start -> ack : [], cost: 1 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 ### Simplification by acceleration and chaining ### 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Accelerating simple loops of location 0. 5.23/2.63 5.23/2.63 Accelerating the following rules: 5.23/2.63 5.23/2.63 0: ack -> ack : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 1 5.23/2.63 5.23/2.63 1: ack -> ack : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Accelerated rule 0 with metering function A (after strengthening guard), yielding the new rule 3. 5.23/2.63 5.23/2.63 Accelerated rule 1 with metering function B, yielding the new rule 4. 5.23/2.63 5.23/2.63 Removing the simple loops: 1. 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Accelerated all simple loops using metering functions (where possible): 5.23/2.63 5.23/2.63 Start location: start 5.23/2.63 5.23/2.63 0: ack -> ack : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 1 5.23/2.63 5.23/2.63 3: ack -> ack : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: A 5.23/2.63 5.23/2.63 4: ack -> ack : B'=0, [ A>=1 && B>=1 ], cost: B 5.23/2.63 5.23/2.63 2: start -> ack : [], cost: 1 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Chained accelerated rules (with incoming rules): 5.23/2.63 5.23/2.63 Start location: start 5.23/2.63 5.23/2.63 2: start -> ack : [], cost: 1 5.23/2.63 5.23/2.63 5: start -> ack : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 2 5.23/2.63 5.23/2.63 6: start -> ack : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: 1+A 5.23/2.63 5.23/2.63 7: start -> ack : B'=0, [ A>=1 && B>=1 ], cost: 1+B 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Removed unreachable locations (and leaf rules with constant cost): 5.23/2.63 5.23/2.63 Start location: start 5.23/2.63 5.23/2.63 6: start -> ack : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: 1+A 5.23/2.63 5.23/2.63 7: start -> ack : B'=0, [ A>=1 && B>=1 ], cost: 1+B 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 ### Computing asymptotic complexity ### 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Fully simplified ITS problem 5.23/2.63 5.23/2.63 Start location: start 5.23/2.63 5.23/2.63 6: start -> ack : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: 1+A 5.23/2.63 5.23/2.63 7: start -> ack : B'=0, [ A>=1 && B>=1 ], cost: 1+B 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Computing asymptotic complexity for rule 6 5.23/2.63 5.23/2.63 Solved the limit problem by the following transformations: 5.23/2.63 5.23/2.63 Created initial limit problem: 5.23/2.63 5.23/2.63 free (+/+!), A (+/+!), B (+/+!), 1+A (+) [not solved] 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 removing all constraints (solved by SMT) 5.23/2.63 5.23/2.63 resulting limit problem: [solved] 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 applying transformation rule (C) using substitution {free==n,A==n,B==n} 5.23/2.63 5.23/2.63 resulting limit problem: 5.23/2.63 5.23/2.63 [solved] 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Solution: 5.23/2.63 5.23/2.63 free / n 5.23/2.63 5.23/2.63 A / n 5.23/2.63 5.23/2.63 B / n 5.23/2.63 5.23/2.63 Resulting cost 1+n has complexity: Poly(n^1) 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Found new complexity Poly(n^1). 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 Obtained the following overall complexity (w.r.t. the length of the input n): 5.23/2.63 5.23/2.63 Complexity: Poly(n^1) 5.23/2.63 5.23/2.63 Cpx degree: 1 5.23/2.63 5.23/2.63 Solved cost: 1+n 5.23/2.63 5.23/2.63 Rule cost: 1+A 5.23/2.63 5.23/2.63 Rule guard: [ A>=1 && B>=1 && free>=1 ] 5.23/2.63 5.23/2.63 5.23/2.63 5.23/2.63 WORST_CASE(Omega(n^1),?) 5.23/2.63 5.23/2.63 5.23/2.63 ---------------------------------------- 5.23/2.63 5.23/2.63 (2) 5.23/2.63 BOUNDS(n^1, INF) 5.23/2.66 EOF