3.90/1.99 WORST_CASE(Omega(n^1), O(n^1)) 3.90/1.99 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.90/1.99 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.90/1.99 3.90/1.99 3.90/1.99 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_1) + nat(Arg_0)). 3.90/1.99 3.90/1.99 (0) CpxIntTrs 3.90/1.99 (1) Koat2 Proof [FINISHED, 133 ms] 3.90/1.99 (2) BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) 3.90/1.99 (3) Loat Proof [FINISHED, 316 ms] 3.90/1.99 (4) BOUNDS(n^1, INF) 3.90/1.99 3.90/1.99 3.90/1.99 ---------------------------------------- 3.90/1.99 3.90/1.99 (0) 3.90/1.99 Obligation: 3.90/1.99 Complexity Int TRS consisting of the following rules: 3.90/1.99 merge(A, B) -> Com_1(merge(A - 1, B)) :|: A >= 1 && B >= 1 3.90/1.99 merge(A, B) -> Com_1(merge(A, B - 1)) :|: A >= 1 && B >= 1 3.90/1.99 start(A, B) -> Com_1(merge(A, B)) :|: TRUE 3.90/1.99 3.90/1.99 The start-symbols are:[start_2] 3.90/1.99 3.90/1.99 3.90/1.99 ---------------------------------------- 3.90/1.99 3.90/1.99 (1) Koat2 Proof (FINISHED) 3.90/1.99 YES( ?, 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)}) 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Initial Complexity Problem: 3.90/1.99 3.90/1.99 Start: start 3.90/1.99 3.90/1.99 Program_Vars: Arg_0, Arg_1 3.90/1.99 3.90/1.99 Temp_Vars: 3.90/1.99 3.90/1.99 Locations: merge, start 3.90/1.99 3.90/1.99 Transitions: 3.90/1.99 3.90/1.99 merge(Arg_0,Arg_1) -> merge(Arg_0-1,Arg_1):|:1 <= Arg_0 && 1 <= Arg_1 3.90/1.99 3.90/1.99 merge(Arg_0,Arg_1) -> merge(Arg_0,Arg_1-1):|:1 <= Arg_0 && 1 <= Arg_1 3.90/1.99 3.90/1.99 start(Arg_0,Arg_1) -> merge(Arg_0,Arg_1):|: 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Timebounds: 3.90/1.99 3.90/1.99 Overall timebound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 3.90/1.99 3.90/1.99 0: merge->merge: max([0, Arg_0]) {O(n)} 3.90/1.99 3.90/1.99 1: merge->merge: max([0, Arg_1]) {O(n)} 3.90/1.99 3.90/1.99 2: start->merge: 1 {O(1)} 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Costbounds: 3.90/1.99 3.90/1.99 Overall costbound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 3.90/1.99 3.90/1.99 0: merge->merge: max([0, Arg_0]) {O(n)} 3.90/1.99 3.90/1.99 1: merge->merge: max([0, Arg_1]) {O(n)} 3.90/1.99 3.90/1.99 2: start->merge: 1 {O(1)} 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Sizebounds: 3.90/1.99 3.90/1.99 `Lower: 3.90/1.99 3.90/1.99 0: merge->merge, Arg_0: 0 {O(1)} 3.90/1.99 3.90/1.99 0: merge->merge, Arg_1: 1 {O(1)} 3.90/1.99 3.90/1.99 1: merge->merge, Arg_0: 1 {O(1)} 3.90/1.99 3.90/1.99 1: merge->merge, Arg_1: 0 {O(1)} 3.90/1.99 3.90/1.99 2: start->merge, Arg_0: Arg_0 {O(n)} 3.90/1.99 3.90/1.99 2: start->merge, Arg_1: Arg_1 {O(n)} 3.90/1.99 3.90/1.99 `Upper: 3.90/1.99 3.90/1.99 0: merge->merge, Arg_0: Arg_0 {O(n)} 3.90/1.99 3.90/1.99 0: merge->merge, Arg_1: Arg_1 {O(n)} 3.90/1.99 3.90/1.99 1: merge->merge, Arg_0: Arg_0 {O(n)} 3.90/1.99 3.90/1.99 1: merge->merge, Arg_1: Arg_1 {O(n)} 3.90/1.99 3.90/1.99 2: start->merge, Arg_0: Arg_0 {O(n)} 3.90/1.99 3.90/1.99 2: start->merge, Arg_1: Arg_1 {O(n)} 3.90/1.99 3.90/1.99 3.90/1.99 ---------------------------------------- 3.90/1.99 3.90/1.99 (2) 3.90/1.99 BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) 3.90/1.99 3.90/1.99 ---------------------------------------- 3.90/1.99 3.90/1.99 (3) Loat Proof (FINISHED) 3.90/1.99 3.90/1.99 3.90/1.99 ### Pre-processing the ITS problem ### 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Initial linear ITS problem 3.90/1.99 3.90/1.99 Start location: start 3.90/1.99 3.90/1.99 0: merge -> merge : A'=-1+A, [ A>=1 && B>=1 ], cost: 1 3.90/1.99 3.90/1.99 1: merge -> merge : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 3.90/1.99 3.90/1.99 2: start -> merge : [], cost: 1 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 ### Simplification by acceleration and chaining ### 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Accelerating simple loops of location 0. 3.90/1.99 3.90/1.99 Accelerating the following rules: 3.90/1.99 3.90/1.99 0: merge -> merge : A'=-1+A, [ A>=1 && B>=1 ], cost: 1 3.90/1.99 3.90/1.99 1: merge -> merge : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Accelerated rule 0 with metering function A, yielding the new rule 3. 3.90/1.99 3.90/1.99 Accelerated rule 1 with metering function B, yielding the new rule 4. 3.90/1.99 3.90/1.99 Removing the simple loops: 0 1. 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Accelerated all simple loops using metering functions (where possible): 3.90/1.99 3.90/1.99 Start location: start 3.90/1.99 3.90/1.99 3: merge -> merge : A'=0, [ A>=1 && B>=1 ], cost: A 3.90/1.99 3.90/1.99 4: merge -> merge : B'=0, [ A>=1 && B>=1 ], cost: B 3.90/1.99 3.90/1.99 2: start -> merge : [], cost: 1 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Chained accelerated rules (with incoming rules): 3.90/1.99 3.90/1.99 Start location: start 3.90/1.99 3.90/1.99 2: start -> merge : [], cost: 1 3.90/1.99 3.90/1.99 5: start -> merge : A'=0, [ A>=1 && B>=1 ], cost: 1+A 3.90/1.99 3.90/1.99 6: start -> merge : B'=0, [ A>=1 && B>=1 ], cost: 1+B 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Removed unreachable locations (and leaf rules with constant cost): 3.90/1.99 3.90/1.99 Start location: start 3.90/1.99 3.90/1.99 5: start -> merge : A'=0, [ A>=1 && B>=1 ], cost: 1+A 3.90/1.99 3.90/1.99 6: start -> merge : B'=0, [ A>=1 && B>=1 ], cost: 1+B 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 ### Computing asymptotic complexity ### 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Fully simplified ITS problem 3.90/1.99 3.90/1.99 Start location: start 3.90/1.99 3.90/1.99 5: start -> merge : A'=0, [ A>=1 && B>=1 ], cost: 1+A 3.90/1.99 3.90/1.99 6: start -> merge : B'=0, [ A>=1 && B>=1 ], cost: 1+B 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Computing asymptotic complexity for rule 5 3.90/1.99 3.90/1.99 Solved the limit problem by the following transformations: 3.90/1.99 3.90/1.99 Created initial limit problem: 3.90/1.99 3.90/1.99 A (+/+!), B (+/+!), 1+A (+) [not solved] 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 removing all constraints (solved by SMT) 3.90/1.99 3.90/1.99 resulting limit problem: [solved] 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 applying transformation rule (C) using substitution {A==n,B==1} 3.90/1.99 3.90/1.99 resulting limit problem: 3.90/1.99 3.90/1.99 [solved] 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Solution: 3.90/1.99 3.90/1.99 A / n 3.90/1.99 3.90/1.99 B / 1 3.90/1.99 3.90/1.99 Resulting cost 1+n has complexity: Poly(n^1) 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Found new complexity Poly(n^1). 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 Obtained the following overall complexity (w.r.t. the length of the input n): 3.90/1.99 3.90/1.99 Complexity: Poly(n^1) 3.90/1.99 3.90/1.99 Cpx degree: 1 3.90/1.99 3.90/1.99 Solved cost: 1+n 3.90/1.99 3.90/1.99 Rule cost: 1+A 3.90/1.99 3.90/1.99 Rule guard: [ A>=1 && B>=1 ] 3.90/1.99 3.90/1.99 3.90/1.99 3.90/1.99 WORST_CASE(Omega(n^1),?) 3.90/1.99 3.90/1.99 3.90/1.99 ---------------------------------------- 3.90/1.99 3.90/1.99 (4) 3.90/1.99 BOUNDS(n^1, INF) 3.90/2.02 EOF