0.00/0.54 YES 0.00/0.54 0.00/0.54 DP problem for innermost termination. 0.00/0.54 P = 0.00/0.54 eval#(x, y, z) -> eval#(x, y, z) [y > z && z >= x && z >= y] 0.00/0.54 eval#(I0, I1, I2) -> eval#(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] 0.00/0.54 eval#(I3, I4, I5) -> eval#(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] 0.00/0.54 eval#(I6, I7, I8) -> eval#(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] 0.00/0.54 eval#(I9, I10, I11) -> eval#(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] 0.00/0.54 eval#(I12, I13, I14) -> eval#(I12 - 1, I13, I14) [I12 > I14] 0.00/0.54 R = 0.00/0.54 eval(x, y, z) -> eval(x, y, z) [y > z && z >= x && z >= y] 0.00/0.54 eval(I0, I1, I2) -> eval(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] 0.00/0.54 eval(I3, I4, I5) -> eval(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] 0.00/0.54 eval(I6, I7, I8) -> eval(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] 0.00/0.54 eval(I9, I10, I11) -> eval(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] 0.00/0.54 eval(I12, I13, I14) -> eval(I12 - 1, I13, I14) [I12 > I14] 0.00/0.54 0.00/0.54 The dependency graph for this problem is: 0.00/0.54 0 -> 0.00/0.54 1 -> 0.00/0.54 2 -> 2 0.00/0.54 3 -> 0.00/0.54 4 -> 2, 4, 5 0.00/0.54 5 -> 2, 4, 5 0.00/0.54 Where: 0.00/0.54 0) eval#(x, y, z) -> eval#(x, y, z) [y > z && z >= x && z >= y] 0.00/0.54 1) eval#(I0, I1, I2) -> eval#(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] 0.00/0.54 2) eval#(I3, I4, I5) -> eval#(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] 0.00/0.54 3) eval#(I6, I7, I8) -> eval#(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] 0.00/0.54 4) eval#(I9, I10, I11) -> eval#(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] 0.00/0.54 5) eval#(I12, I13, I14) -> eval#(I12 - 1, I13, I14) [I12 > I14] 0.00/0.54 0.00/0.54 We have the following SCCs. 0.00/0.54 { 4, 5 } 0.00/0.54 { 2 } 0.00/0.54 0.00/0.54 DP problem for innermost termination. 0.00/0.54 P = 0.00/0.54 eval#(I3, I4, I5) -> eval#(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] 0.00/0.54 R = 0.00/0.54 eval(x, y, z) -> eval(x, y, z) [y > z && z >= x && z >= y] 0.00/0.54 eval(I0, I1, I2) -> eval(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] 0.00/0.54 eval(I3, I4, I5) -> eval(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] 0.00/0.54 eval(I6, I7, I8) -> eval(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] 0.00/0.54 eval(I9, I10, I11) -> eval(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] 0.00/0.54 eval(I12, I13, I14) -> eval(I12 - 1, I13, I14) [I12 > I14] 0.00/0.54 0.00/0.54 We use the reverse value criterion with the projection function NU: 0.00/0.54 NU[eval#(z1,z2,z3)] = z2 + -1 * z3 0.00/0.54 0.00/0.54 This gives the following inequalities: 0.00/0.54 I4 > I5 && I5 >= I3 ==> I4 + -1 * I5 > I4 - 1 + -1 * I5 with I4 + -1 * I5 >= 0 0.00/0.54 0.00/0.54 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.54 0.00/0.54 DP problem for innermost termination. 0.00/0.54 P = 0.00/0.54 eval#(I9, I10, I11) -> eval#(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] 0.00/0.54 eval#(I12, I13, I14) -> eval#(I12 - 1, I13, I14) [I12 > I14] 0.00/0.54 R = 0.00/0.54 eval(x, y, z) -> eval(x, y, z) [y > z && z >= x && z >= y] 0.00/0.54 eval(I0, I1, I2) -> eval(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] 0.00/0.54 eval(I3, I4, I5) -> eval(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] 0.00/0.54 eval(I6, I7, I8) -> eval(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] 0.00/0.54 eval(I9, I10, I11) -> eval(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] 0.00/0.54 eval(I12, I13, I14) -> eval(I12 - 1, I13, I14) [I12 > I14] 0.00/0.54 0.00/0.54 We use the reverse value criterion with the projection function NU: 0.00/0.54 NU[eval#(z1,z2,z3)] = z1 + -1 * z3 0.00/0.54 0.00/0.54 This gives the following inequalities: 0.00/0.54 I10 > I11 && I9 > I11 ==> I9 + -1 * I11 > I9 - 1 + -1 * I11 with I9 + -1 * I11 >= 0 0.00/0.54 I12 > I14 ==> I12 + -1 * I14 > I12 - 1 + -1 * I14 with I12 + -1 * I14 >= 0 0.00/0.54 0.00/0.54 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.52 EOF