0.00/0.39 YES 0.00/0.39 0.00/0.39 DP problem for innermost termination. 0.00/0.39 P = 0.00/0.39 eval#(x, y) -> eval#(x, y - 1) [x + y > 0 && y >= x && x > y] 0.00/0.39 eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] 0.00/0.39 eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] 0.00/0.39 eval#(I4, I5) -> eval#(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] 0.00/0.39 R = 0.00/0.39 eval(x, y) -> eval(x, y - 1) [x + y > 0 && y >= x && x > y] 0.00/0.39 eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] 0.00/0.39 eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] 0.00/0.39 eval(I4, I5) -> eval(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] 0.00/0.39 0.00/0.39 The dependency graph for this problem is: 0.00/0.39 0 -> 0.00/0.39 1 -> 1, 2 0.00/0.39 2 -> 1 0.00/0.39 3 -> 2, 3 0.00/0.39 Where: 0.00/0.39 0) eval#(x, y) -> eval#(x, y - 1) [x + y > 0 && y >= x && x > y] 0.00/0.39 1) eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] 0.00/0.39 2) eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] 0.00/0.39 3) eval#(I4, I5) -> eval#(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] 0.00/0.39 0.00/0.39 We have the following SCCs. 0.00/0.39 { 3 } 0.00/0.39 { 1, 2 } 0.00/0.39 0.00/0.39 DP problem for innermost termination. 0.00/0.39 P = 0.00/0.39 eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] 0.00/0.39 eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] 0.00/0.39 R = 0.00/0.39 eval(x, y) -> eval(x, y - 1) [x + y > 0 && y >= x && x > y] 0.00/0.39 eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] 0.00/0.39 eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] 0.00/0.39 eval(I4, I5) -> eval(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] 0.00/0.39 0.00/0.39 We use the reverse value criterion with the projection function NU: 0.00/0.39 NU[eval#(z1,z2)] = z1 + z2 + -1 * 0 0.00/0.39 0.00/0.39 This gives the following inequalities: 0.00/0.39 I0 + I1 > 0 && I1 >= I0 && I1 > I0 ==> I0 + I1 + -1 * 0 > I0 + (I1 - 1) + -1 * 0 with I0 + I1 + -1 * 0 >= 0 0.00/0.39 I2 + I3 > 0 && I3 >= I2 && I2 = I3 ==> I2 + I3 + -1 * 0 > I2 - 1 + I3 + -1 * 0 with I2 + I3 + -1 * 0 >= 0 0.00/0.39 0.00/0.39 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.39 0.00/0.39 DP problem for innermost termination. 0.00/0.39 P = 0.00/0.39 eval#(I4, I5) -> eval#(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] 0.00/0.39 R = 0.00/0.39 eval(x, y) -> eval(x, y - 1) [x + y > 0 && y >= x && x > y] 0.00/0.39 eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] 0.00/0.39 eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] 0.00/0.39 eval(I4, I5) -> eval(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] 0.00/0.39 0.00/0.39 We use the reverse value criterion with the projection function NU: 0.00/0.39 NU[eval#(z1,z2)] = z1 0.00/0.39 0.00/0.39 This gives the following inequalities: 0.00/0.39 I4 + I5 > 0 && I4 > I5 ==> I4 > I4 - 1 with I4 >= 0 0.00/0.39 0.00/0.39 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.37 EOF