0.00/0.13 YES 0.00/0.13 0.00/0.13 DP problem for innermost termination. 0.00/0.13 P = 0.00/0.13 rand#(I1, y) -> rand#(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.13 rand#(I1, y) -> id_inc#(y) [I1 > 0] 0.00/0.13 random#(I3) -> rand#(I3, w(0)) [I3 >= 0] 0.00/0.13 R = 0.00/0.13 id_inc(w(x)) -> w(x + 1) 0.00/0.13 id_inc(w(I0)) -> w(I0) 0.00/0.13 rand(I1, y) -> rand(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.13 rand(I2, B0) -> B0 [I2 = 0] 0.00/0.13 random(I3) -> rand(I3, w(0)) [I3 >= 0] 0.00/0.13 0.00/0.13 The dependency graph for this problem is: 0.00/0.13 0 -> 0, 1 0.00/0.13 1 -> 0.00/0.13 2 -> 0, 1 0.00/0.13 Where: 0.00/0.13 0) rand#(I1, y) -> rand#(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.13 1) rand#(I1, y) -> id_inc#(y) [I1 > 0] 0.00/0.13 2) random#(I3) -> rand#(I3, w(0)) [I3 >= 0] 0.00/0.13 0.00/0.13 We have the following SCCs. 0.00/0.13 { 0 } 0.00/0.13 0.00/0.13 DP problem for innermost termination. 0.00/0.13 P = 0.00/0.13 rand#(I1, y) -> rand#(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.13 R = 0.00/0.13 id_inc(w(x)) -> w(x + 1) 0.00/0.13 id_inc(w(I0)) -> w(I0) 0.00/0.13 rand(I1, y) -> rand(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.13 rand(I2, B0) -> B0 [I2 = 0] 0.00/0.13 random(I3) -> rand(I3, w(0)) [I3 >= 0] 0.00/0.13 0.00/0.13 We use the reverse value criterion with the projection function NU: 0.00/0.13 NU[rand#(z1,z2)] = z1 0.00/0.13 0.00/0.13 This gives the following inequalities: 0.00/0.13 I1 > 0 ==> I1 > I1 - 1 with I1 >= 0 0.00/0.13 0.00/0.13 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.11 EOF