3.90/1.82 YES 3.90/1.83 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 3.90/1.83 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.90/1.83 3.90/1.83 3.90/1.83 Termination of the given ITRS could be proven: 3.90/1.83 3.90/1.83 (0) ITRS 3.90/1.83 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 3.90/1.83 (2) IDP 3.90/1.83 (3) UsableRulesProof [EQUIVALENT, 0 ms] 3.90/1.83 (4) IDP 3.90/1.83 (5) IDPNonInfProof [SOUND, 167 ms] 3.90/1.83 (6) IDP 3.90/1.83 (7) PisEmptyProof [EQUIVALENT, 0 ms] 3.90/1.83 (8) YES 3.90/1.83 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (0) 3.90/1.83 Obligation: 3.90/1.83 ITRS problem: 3.90/1.83 3.90/1.83 The following function symbols are pre-defined: 3.90/1.83 <<< 3.90/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.83 / ~ Div: (Integer, Integer) -> Integer 3.90/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.83 + ~ Add: (Integer, Integer) -> Integer 3.90/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.83 >>> 3.90/1.83 3.90/1.83 The TRS R consists of the following rules: 3.90/1.83 f(TRUE, x, y) -> f(x > y && y > 2, 1 + x, 2 * y) 3.90/1.83 The set Q consists of the following terms: 3.90/1.83 f(TRUE, x0, x1) 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (1) ITRStoIDPProof (EQUIVALENT) 3.90/1.83 Added dependency pairs 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (2) 3.90/1.83 Obligation: 3.90/1.83 IDP problem: 3.90/1.83 The following function symbols are pre-defined: 3.90/1.83 <<< 3.90/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.83 / ~ Div: (Integer, Integer) -> Integer 3.90/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.83 + ~ Add: (Integer, Integer) -> Integer 3.90/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.83 >>> 3.90/1.83 3.90/1.83 3.90/1.83 The following domains are used: 3.90/1.83 Boolean, Integer 3.90/1.83 3.90/1.83 The ITRS R consists of the following rules: 3.90/1.83 f(TRUE, x, y) -> f(x > y && y > 2, 1 + x, 2 * y) 3.90/1.83 3.90/1.83 The integer pair graph contains the following rules and edges: 3.90/1.83 (0): F(TRUE, x[0], y[0]) -> F(x[0] > y[0] && y[0] > 2, 1 + x[0], 2 * y[0]) 3.90/1.83 3.90/1.83 (0) -> (0), if (x[0] > y[0] && y[0] > 2 & 1 + x[0] ->^* x[0]' & 2 * y[0] ->^* y[0]') 3.90/1.83 3.90/1.83 The set Q consists of the following terms: 3.90/1.83 f(TRUE, x0, x1) 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (3) UsableRulesProof (EQUIVALENT) 3.90/1.83 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (4) 3.90/1.83 Obligation: 3.90/1.83 IDP problem: 3.90/1.83 The following function symbols are pre-defined: 3.90/1.83 <<< 3.90/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.83 / ~ Div: (Integer, Integer) -> Integer 3.90/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.83 + ~ Add: (Integer, Integer) -> Integer 3.90/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.83 >>> 3.90/1.83 3.90/1.83 3.90/1.83 The following domains are used: 3.90/1.83 Boolean, Integer 3.90/1.83 3.90/1.83 R is empty. 3.90/1.83 3.90/1.83 The integer pair graph contains the following rules and edges: 3.90/1.83 (0): F(TRUE, x[0], y[0]) -> F(x[0] > y[0] && y[0] > 2, 1 + x[0], 2 * y[0]) 3.90/1.83 3.90/1.83 (0) -> (0), if (x[0] > y[0] && y[0] > 2 & 1 + x[0] ->^* x[0]' & 2 * y[0] ->^* y[0]') 3.90/1.83 3.90/1.83 The set Q consists of the following terms: 3.90/1.83 f(TRUE, x0, x1) 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (5) IDPNonInfProof (SOUND) 3.90/1.83 Used the following options for this NonInfProof: 3.90/1.83 3.90/1.83 IDPGPoloSolver: 3.90/1.83 Range: [(-1,2)] 3.90/1.83 IsNat: false 3.90/1.83 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@2c4174b7 3.90/1.83 Constraint Generator: NonInfConstraintGenerator: 3.90/1.83 PathGenerator: MetricPathGenerator: 3.90/1.83 Max Left Steps: 1 3.90/1.83 Max Right Steps: 1 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 The constraints were generated the following way: 3.90/1.83 3.90/1.83 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 3.90/1.83 3.90/1.83 Note that final constraints are written in bold face. 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 For Pair F(TRUE, x, y) -> F(&&(>(x, y), >(y, 2)), +(1, x), *(2, y)) the following chains were created: 3.90/1.83 *We consider the chain F(TRUE, x[0], y[0]) -> F(&&(>(x[0], y[0]), >(y[0], 2)), +(1, x[0]), *(2, y[0])), F(TRUE, x[0], y[0]) -> F(&&(>(x[0], y[0]), >(y[0], 2)), +(1, x[0]), *(2, y[0])), F(TRUE, x[0], y[0]) -> F(&&(>(x[0], y[0]), >(y[0], 2)), +(1, x[0]), *(2, y[0])) which results in the following constraint: 3.90/1.83 3.90/1.83 (1) (&&(>(x[0], y[0]), >(y[0], 2))=TRUE & +(1, x[0])=x[0]1 & *(2, y[0])=y[0]1 & &&(>(x[0]1, y[0]1), >(y[0]1, 2))=TRUE & +(1, x[0]1)=x[0]2 & *(2, y[0]1)=y[0]2 ==> F(TRUE, x[0]1, y[0]1)_>=_NonInfC & F(TRUE, x[0]1, y[0]1)_>=_F(&&(>(x[0]1, y[0]1), >(y[0]1, 2)), +(1, x[0]1), *(2, y[0]1)) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(y[0]1, 2)), +(1, x[0]1), *(2, y[0]1))), >=)) 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 3.90/1.83 3.90/1.83 (2) (>(x[0], y[0])=TRUE & >(y[0], 2)=TRUE & >(+(1, x[0]), *(2, y[0]))=TRUE & >(*(2, y[0]), 2)=TRUE ==> F(TRUE, +(1, x[0]), *(2, y[0]))_>=_NonInfC & F(TRUE, +(1, x[0]), *(2, y[0]))_>=_F(&&(>(+(1, x[0]), *(2, y[0])), >(*(2, y[0]), 2)), +(1, +(1, x[0])), *(2, *(2, y[0]))) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(y[0]1, 2)), +(1, x[0]1), *(2, y[0]1))), >=)) 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.90/1.83 3.90/1.83 (3) (x[0] + [-1] + [-1]y[0] >= 0 & y[0] + [-3] >= 0 & x[0] + [-2]y[0] >= 0 & [2]y[0] + [-3] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(y[0]1, 2)), +(1, x[0]1), *(2, y[0]1))), >=) & [(3)bni_9 + (-1)Bound*bni_9] + [(-2)bni_9]y[0] + [bni_9]x[0] >= 0 & [-2 + (-1)bso_10] + [2]y[0] >= 0) 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.90/1.83 3.90/1.83 (4) (x[0] + [-1] + [-1]y[0] >= 0 & y[0] + [-3] >= 0 & x[0] + [-2]y[0] >= 0 & [2]y[0] + [-3] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(y[0]1, 2)), +(1, x[0]1), *(2, y[0]1))), >=) & [(3)bni_9 + (-1)Bound*bni_9] + [(-2)bni_9]y[0] + [bni_9]x[0] >= 0 & [-2 + (-1)bso_10] + [2]y[0] >= 0) 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.90/1.83 3.90/1.83 (5) (x[0] + [-1] + [-1]y[0] >= 0 & y[0] + [-3] >= 0 & x[0] + [-2]y[0] >= 0 & [2]y[0] + [-3] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(y[0]1, 2)), +(1, x[0]1), *(2, y[0]1))), >=) & [(3)bni_9 + (-1)Bound*bni_9] + [(-2)bni_9]y[0] + [bni_9]x[0] >= 0 & [-2 + (-1)bso_10] + [2]y[0] >= 0) 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 To summarize, we get the following constraints P__>=_ for the following pairs. 3.90/1.83 3.90/1.83 *F(TRUE, x, y) -> F(&&(>(x, y), >(y, 2)), +(1, x), *(2, y)) 3.90/1.83 3.90/1.83 *(x[0] + [-1] + [-1]y[0] >= 0 & y[0] + [-3] >= 0 & x[0] + [-2]y[0] >= 0 & [2]y[0] + [-3] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(y[0]1, 2)), +(1, x[0]1), *(2, y[0]1))), >=) & [(3)bni_9 + (-1)Bound*bni_9] + [(-2)bni_9]y[0] + [bni_9]x[0] >= 0 & [-2 + (-1)bso_10] + [2]y[0] >= 0) 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 3.90/1.83 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 3.90/1.83 3.90/1.83 Using the following integer polynomial ordering the resulting constraints can be solved 3.90/1.83 3.90/1.83 Polynomial interpretation over integers[POLO]: 3.90/1.83 3.90/1.83 POL(TRUE) = 0 3.90/1.83 POL(FALSE) = [3] 3.90/1.83 POL(F(x_1, x_2, x_3)) = [2] + [-1]x_3 + x_2 + [-1]x_1 3.90/1.83 POL(&&(x_1, x_2)) = [-1] 3.90/1.83 POL(>(x_1, x_2)) = [-1] 3.90/1.83 POL(2) = [2] 3.90/1.83 POL(+(x_1, x_2)) = x_1 + x_2 3.90/1.83 POL(1) = [1] 3.90/1.83 POL(*(x_1, x_2)) = x_1*x_2 3.90/1.83 3.90/1.83 3.90/1.83 The following pairs are in P_>: 3.90/1.83 3.90/1.83 3.90/1.83 F(TRUE, x[0], y[0]) -> F(&&(>(x[0], y[0]), >(y[0], 2)), +(1, x[0]), *(2, y[0])) 3.90/1.83 3.90/1.83 3.90/1.83 The following pairs are in P_bound: 3.90/1.83 3.90/1.83 3.90/1.83 F(TRUE, x[0], y[0]) -> F(&&(>(x[0], y[0]), >(y[0], 2)), +(1, x[0]), *(2, y[0])) 3.90/1.83 3.90/1.83 3.90/1.83 The following pairs are in P_>=: 3.90/1.83 3.90/1.83 none 3.90/1.83 3.90/1.83 3.90/1.83 At least the following rules have been oriented under context sensitive arithmetic replacement: 3.90/1.83 3.90/1.83 TRUE^1 -> &&(TRUE, TRUE)^1 3.90/1.83 FALSE^1 -> &&(TRUE, FALSE)^1 3.90/1.83 FALSE^1 -> &&(FALSE, TRUE)^1 3.90/1.83 FALSE^1 -> &&(FALSE, FALSE)^1 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (6) 3.90/1.83 Obligation: 3.90/1.83 IDP problem: 3.90/1.83 The following function symbols are pre-defined: 3.90/1.83 <<< 3.90/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.83 / ~ Div: (Integer, Integer) -> Integer 3.90/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.83 + ~ Add: (Integer, Integer) -> Integer 3.90/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.83 >>> 3.90/1.83 3.90/1.83 3.90/1.83 The following domains are used: 3.90/1.83 none 3.90/1.83 3.90/1.83 R is empty. 3.90/1.83 3.90/1.83 The integer pair graph is empty. 3.90/1.83 3.90/1.83 The set Q consists of the following terms: 3.90/1.83 f(TRUE, x0, x1) 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (7) PisEmptyProof (EQUIVALENT) 3.90/1.83 The TRS P is empty. Hence, there is no (P,Q,R) chain. 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (8) 3.90/1.83 YES 3.90/1.84 EOF