0.00/0.16 YES 0.00/0.16 0.00/0.16 DP problem for innermost termination. 0.00/0.16 P = 0.00/0.16 eval#(x, y) -> eval#(x - 1, y) [x > 0 && not(x = 0) && x <= y] 0.00/0.16 eval#(I0, I1) -> eval#(I1, I1) [I0 > 0 && not(I0 = 0) && I0 > I1] 0.00/0.16 R = 0.00/0.16 eval(x, y) -> eval(x - 1, y) [x > 0 && not(x = 0) && x <= y] 0.00/0.16 eval(I0, I1) -> eval(I1, I1) [I0 > 0 && not(I0 = 0) && I0 > I1] 0.00/0.16 0.00/0.16 The dependency graph for this problem is: 0.00/0.16 0 -> 0 0.00/0.16 1 -> 0 0.00/0.16 Where: 0.00/0.16 0) eval#(x, y) -> eval#(x - 1, y) [x > 0 && not(x = 0) && x <= y] 0.00/0.16 1) eval#(I0, I1) -> eval#(I1, I1) [I0 > 0 && not(I0 = 0) && I0 > I1] 0.00/0.16 0.00/0.16 We have the following SCCs. 0.00/0.16 { 0 } 0.00/0.16 0.00/0.16 DP problem for innermost termination. 0.00/0.16 P = 0.00/0.16 eval#(x, y) -> eval#(x - 1, y) [x > 0 && not(x = 0) && x <= y] 0.00/0.16 R = 0.00/0.16 eval(x, y) -> eval(x - 1, y) [x > 0 && not(x = 0) && x <= y] 0.00/0.16 eval(I0, I1) -> eval(I1, I1) [I0 > 0 && not(I0 = 0) && I0 > I1] 0.00/0.16 0.00/0.16 We use the reverse value criterion with the projection function NU: 0.00/0.16 NU[eval#(z1,z2)] = z1 0.00/0.16 0.00/0.16 This gives the following inequalities: 0.00/0.16 x > 0 && not(x = 0) && x <= y ==> x > x - 1 with x >= 0 0.00/0.16 0.00/0.16 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.14 EOF