6.52/2.68 YES 6.83/2.70 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 6.83/2.70 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.83/2.70 6.83/2.70 6.83/2.70 Termination of the given ITRS could be proven: 6.83/2.70 6.83/2.70 (0) ITRS 6.83/2.70 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 6.83/2.70 (2) IDP 6.83/2.70 (3) UsableRulesProof [EQUIVALENT, 0 ms] 6.83/2.70 (4) IDP 6.83/2.70 (5) IDPNonInfProof [SOUND, 376 ms] 6.83/2.70 (6) IDP 6.83/2.70 (7) IDependencyGraphProof [EQUIVALENT, 0 ms] 6.83/2.70 (8) IDP 6.83/2.70 (9) IDPNonInfProof [SOUND, 128 ms] 6.83/2.70 (10) IDP 6.83/2.70 (11) IDependencyGraphProof [EQUIVALENT, 0 ms] 6.83/2.70 (12) TRUE 6.83/2.70 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (0) 6.83/2.70 Obligation: 6.83/2.70 ITRS problem: 6.83/2.70 6.83/2.70 The following function symbols are pre-defined: 6.83/2.70 <<< 6.83/2.70 & ~ Bwand: (Integer, Integer) -> Integer 6.83/2.70 >= ~ Ge: (Integer, Integer) -> Boolean 6.83/2.70 | ~ Bwor: (Integer, Integer) -> Integer 6.83/2.70 / ~ Div: (Integer, Integer) -> Integer 6.83/2.70 != ~ Neq: (Integer, Integer) -> Boolean 6.83/2.70 && ~ Land: (Boolean, Boolean) -> Boolean 6.83/2.70 ! ~ Lnot: (Boolean) -> Boolean 6.83/2.70 = ~ Eq: (Integer, Integer) -> Boolean 6.83/2.70 <= ~ Le: (Integer, Integer) -> Boolean 6.83/2.70 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.83/2.70 % ~ Mod: (Integer, Integer) -> Integer 6.83/2.70 > ~ Gt: (Integer, Integer) -> Boolean 6.83/2.70 + ~ Add: (Integer, Integer) -> Integer 6.83/2.70 -1 ~ UnaryMinus: (Integer) -> Integer 6.83/2.70 < ~ Lt: (Integer, Integer) -> Boolean 6.83/2.70 || ~ Lor: (Boolean, Boolean) -> Boolean 6.83/2.70 - ~ Sub: (Integer, Integer) -> Integer 6.83/2.70 ~ ~ Bwnot: (Integer) -> Integer 6.83/2.70 * ~ Mul: (Integer, Integer) -> Integer 6.83/2.70 >>> 6.83/2.70 6.83/2.70 The TRS R consists of the following rules: 6.83/2.70 eval_1(x, y, z) -> Cond_eval_1(x > z, x, y, z) 6.83/2.70 Cond_eval_1(TRUE, x, y, z) -> eval_2(x, y, z) 6.83/2.70 eval_2(x, y, z) -> Cond_eval_2(x > z && y > z, x, y, z) 6.83/2.70 Cond_eval_2(TRUE, x, y, z) -> eval_2(x, y - 1, z) 6.83/2.70 eval_2(x, y, z) -> Cond_eval_21(x > z && z >= y, x, y, z) 6.83/2.70 Cond_eval_21(TRUE, x, y, z) -> eval_1(x - 1, y, z) 6.83/2.70 The set Q consists of the following terms: 6.83/2.70 eval_1(x0, x1, x2) 6.83/2.70 Cond_eval_1(TRUE, x0, x1, x2) 6.83/2.70 eval_2(x0, x1, x2) 6.83/2.70 Cond_eval_2(TRUE, x0, x1, x2) 6.83/2.70 Cond_eval_21(TRUE, x0, x1, x2) 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (1) ITRStoIDPProof (EQUIVALENT) 6.83/2.70 Added dependency pairs 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (2) 6.83/2.70 Obligation: 6.83/2.70 IDP problem: 6.83/2.70 The following function symbols are pre-defined: 6.83/2.70 <<< 6.83/2.70 & ~ Bwand: (Integer, Integer) -> Integer 6.83/2.70 >= ~ Ge: (Integer, Integer) -> Boolean 6.83/2.70 | ~ Bwor: (Integer, Integer) -> Integer 6.83/2.70 / ~ Div: (Integer, Integer) -> Integer 6.83/2.70 != ~ Neq: (Integer, Integer) -> Boolean 6.83/2.70 && ~ Land: (Boolean, Boolean) -> Boolean 6.83/2.70 ! ~ Lnot: (Boolean) -> Boolean 6.83/2.70 = ~ Eq: (Integer, Integer) -> Boolean 6.83/2.70 <= ~ Le: (Integer, Integer) -> Boolean 6.83/2.70 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.83/2.70 % ~ Mod: (Integer, Integer) -> Integer 6.83/2.70 > ~ Gt: (Integer, Integer) -> Boolean 6.83/2.70 + ~ Add: (Integer, Integer) -> Integer 6.83/2.70 -1 ~ UnaryMinus: (Integer) -> Integer 6.83/2.70 < ~ Lt: (Integer, Integer) -> Boolean 6.83/2.70 || ~ Lor: (Boolean, Boolean) -> Boolean 6.83/2.70 - ~ Sub: (Integer, Integer) -> Integer 6.83/2.70 ~ ~ Bwnot: (Integer) -> Integer 6.83/2.70 * ~ Mul: (Integer, Integer) -> Integer 6.83/2.70 >>> 6.83/2.70 6.83/2.70 6.83/2.70 The following domains are used: 6.83/2.70 Integer, Boolean 6.83/2.70 6.83/2.70 The ITRS R consists of the following rules: 6.83/2.70 eval_1(x, y, z) -> Cond_eval_1(x > z, x, y, z) 6.83/2.70 Cond_eval_1(TRUE, x, y, z) -> eval_2(x, y, z) 6.83/2.70 eval_2(x, y, z) -> Cond_eval_2(x > z && y > z, x, y, z) 6.83/2.70 Cond_eval_2(TRUE, x, y, z) -> eval_2(x, y - 1, z) 6.83/2.70 eval_2(x, y, z) -> Cond_eval_21(x > z && z >= y, x, y, z) 6.83/2.70 Cond_eval_21(TRUE, x, y, z) -> eval_1(x - 1, y, z) 6.83/2.70 6.83/2.70 The integer pair graph contains the following rules and edges: 6.83/2.70 (0): EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(x[0] > z[0], x[0], y[0], z[0]) 6.83/2.70 (1): COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 (2): EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(x[2] > z[2] && y[2] > z[2], x[2], y[2], z[2]) 6.83/2.70 (3): COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], y[3] - 1, z[3]) 6.83/2.70 (4): EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(x[4] > z[4] && z[4] >= y[4], x[4], y[4], z[4]) 6.83/2.70 (5): COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5] - 1, y[5], z[5]) 6.83/2.70 6.83/2.70 (0) -> (1), if (x[0] > z[0] & x[0] ->^* x[1] & y[0] ->^* y[1] & z[0] ->^* z[1]) 6.83/2.70 (1) -> (2), if (x[1] ->^* x[2] & y[1] ->^* y[2] & z[1] ->^* z[2]) 6.83/2.70 (1) -> (4), if (x[1] ->^* x[4] & y[1] ->^* y[4] & z[1] ->^* z[4]) 6.83/2.70 (2) -> (3), if (x[2] > z[2] && y[2] > z[2] & x[2] ->^* x[3] & y[2] ->^* y[3] & z[2] ->^* z[3]) 6.83/2.70 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2] & z[3] ->^* z[2]) 6.83/2.70 (3) -> (4), if (x[3] ->^* x[4] & y[3] - 1 ->^* y[4] & z[3] ->^* z[4]) 6.83/2.70 (4) -> (5), if (x[4] > z[4] && z[4] >= y[4] & x[4] ->^* x[5] & y[4] ->^* y[5] & z[4] ->^* z[5]) 6.83/2.70 (5) -> (0), if (x[5] - 1 ->^* x[0] & y[5] ->^* y[0] & z[5] ->^* z[0]) 6.83/2.70 6.83/2.70 The set Q consists of the following terms: 6.83/2.70 eval_1(x0, x1, x2) 6.83/2.70 Cond_eval_1(TRUE, x0, x1, x2) 6.83/2.70 eval_2(x0, x1, x2) 6.83/2.70 Cond_eval_2(TRUE, x0, x1, x2) 6.83/2.70 Cond_eval_21(TRUE, x0, x1, x2) 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (3) UsableRulesProof (EQUIVALENT) 6.83/2.70 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (4) 6.83/2.70 Obligation: 6.83/2.70 IDP problem: 6.83/2.70 The following function symbols are pre-defined: 6.83/2.70 <<< 6.83/2.70 & ~ Bwand: (Integer, Integer) -> Integer 6.83/2.70 >= ~ Ge: (Integer, Integer) -> Boolean 6.83/2.70 | ~ Bwor: (Integer, Integer) -> Integer 6.83/2.70 / ~ Div: (Integer, Integer) -> Integer 6.83/2.70 != ~ Neq: (Integer, Integer) -> Boolean 6.83/2.70 && ~ Land: (Boolean, Boolean) -> Boolean 6.83/2.70 ! ~ Lnot: (Boolean) -> Boolean 6.83/2.70 = ~ Eq: (Integer, Integer) -> Boolean 6.83/2.70 <= ~ Le: (Integer, Integer) -> Boolean 6.83/2.70 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.83/2.70 % ~ Mod: (Integer, Integer) -> Integer 6.83/2.70 > ~ Gt: (Integer, Integer) -> Boolean 6.83/2.70 + ~ Add: (Integer, Integer) -> Integer 6.83/2.70 -1 ~ UnaryMinus: (Integer) -> Integer 6.83/2.70 < ~ Lt: (Integer, Integer) -> Boolean 6.83/2.70 || ~ Lor: (Boolean, Boolean) -> Boolean 6.83/2.70 - ~ Sub: (Integer, Integer) -> Integer 6.83/2.70 ~ ~ Bwnot: (Integer) -> Integer 6.83/2.70 * ~ Mul: (Integer, Integer) -> Integer 6.83/2.70 >>> 6.83/2.70 6.83/2.70 6.83/2.70 The following domains are used: 6.83/2.70 Integer, Boolean 6.83/2.70 6.83/2.70 R is empty. 6.83/2.70 6.83/2.70 The integer pair graph contains the following rules and edges: 6.83/2.70 (0): EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(x[0] > z[0], x[0], y[0], z[0]) 6.83/2.70 (1): COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 (2): EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(x[2] > z[2] && y[2] > z[2], x[2], y[2], z[2]) 6.83/2.70 (3): COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], y[3] - 1, z[3]) 6.83/2.70 (4): EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(x[4] > z[4] && z[4] >= y[4], x[4], y[4], z[4]) 6.83/2.70 (5): COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5] - 1, y[5], z[5]) 6.83/2.70 6.83/2.70 (0) -> (1), if (x[0] > z[0] & x[0] ->^* x[1] & y[0] ->^* y[1] & z[0] ->^* z[1]) 6.83/2.70 (1) -> (2), if (x[1] ->^* x[2] & y[1] ->^* y[2] & z[1] ->^* z[2]) 6.83/2.70 (1) -> (4), if (x[1] ->^* x[4] & y[1] ->^* y[4] & z[1] ->^* z[4]) 6.83/2.70 (2) -> (3), if (x[2] > z[2] && y[2] > z[2] & x[2] ->^* x[3] & y[2] ->^* y[3] & z[2] ->^* z[3]) 6.83/2.70 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2] & z[3] ->^* z[2]) 6.83/2.70 (3) -> (4), if (x[3] ->^* x[4] & y[3] - 1 ->^* y[4] & z[3] ->^* z[4]) 6.83/2.70 (4) -> (5), if (x[4] > z[4] && z[4] >= y[4] & x[4] ->^* x[5] & y[4] ->^* y[5] & z[4] ->^* z[5]) 6.83/2.70 (5) -> (0), if (x[5] - 1 ->^* x[0] & y[5] ->^* y[0] & z[5] ->^* z[0]) 6.83/2.70 6.83/2.70 The set Q consists of the following terms: 6.83/2.70 eval_1(x0, x1, x2) 6.83/2.70 Cond_eval_1(TRUE, x0, x1, x2) 6.83/2.70 eval_2(x0, x1, x2) 6.83/2.70 Cond_eval_2(TRUE, x0, x1, x2) 6.83/2.70 Cond_eval_21(TRUE, x0, x1, x2) 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (5) IDPNonInfProof (SOUND) 6.83/2.70 Used the following options for this NonInfProof: 6.83/2.70 6.83/2.70 IDPGPoloSolver: 6.83/2.70 Range: [(-1,2)] 6.83/2.70 IsNat: false 6.83/2.70 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@430b8e6c 6.83/2.70 Constraint Generator: NonInfConstraintGenerator: 6.83/2.70 PathGenerator: MetricPathGenerator: 6.83/2.70 Max Left Steps: 1 6.83/2.70 Max Right Steps: 1 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 The constraints were generated the following way: 6.83/2.70 6.83/2.70 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 6.83/2.70 6.83/2.70 Note that final constraints are written in bold face. 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair EVAL_1(x, y, z) -> COND_EVAL_1(>(x, z), x, y, z) the following chains were created: 6.83/2.70 *We consider the chain EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]), COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (>(x[0], z[0])=TRUE & x[0]=x[1] & y[0]=y[1] & z[0]=z[1] ==> EVAL_1(x[0], y[0], z[0])_>=_NonInfC & EVAL_1(x[0], y[0], z[0])_>=_COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) & (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[0], z[0])=TRUE ==> EVAL_1(x[0], y[0], z[0])_>=_NonInfC & EVAL_1(x[0], y[0], z[0])_>=_COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) & (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [(2)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]z[0] + [bni_29]y[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [(2)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]z[0] + [bni_29]y[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [(2)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]z[0] + [bni_29]y[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [bni_29] = 0 & [(2)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]z[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [bni_29] = 0 & [(2)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]z[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [bni_29] = 0 & [(2)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]z[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 (9) (x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [bni_29] = 0 & [(2)bni_29 + (-1)Bound*bni_29] + [bni_29]z[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair COND_EVAL_1(TRUE, x, y, z) -> EVAL_2(x, y, z) the following chains were created: 6.83/2.70 *We consider the chain COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]), EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (x[1]=x[2] & y[1]=y[2] & z[1]=z[2] ==> COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_EVAL_2(x[1], y[1], z[1]) & (U^Increasing(EVAL_2(x[1], y[1], z[1])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_EVAL_2(x[1], y[1], z[1]) & (U^Increasing(EVAL_2(x[1], y[1], z[1])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *We consider the chain COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]), EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (x[1]=x[4] & y[1]=y[4] & z[1]=z[4] ==> COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_EVAL_2(x[1], y[1], z[1]) & (U^Increasing(EVAL_2(x[1], y[1], z[1])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_EVAL_2(x[1], y[1], z[1]) & (U^Increasing(EVAL_2(x[1], y[1], z[1])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair EVAL_2(x, y, z) -> COND_EVAL_2(&&(>(x, z), >(y, z)), x, y, z) the following chains were created: 6.83/2.70 *We consider the chain EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]), COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], -(y[3], 1), z[3]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (&&(>(x[2], z[2]), >(y[2], z[2]))=TRUE & x[2]=x[3] & y[2]=y[3] & z[2]=z[3] ==> EVAL_2(x[2], y[2], z[2])_>=_NonInfC & EVAL_2(x[2], y[2], z[2])_>=_COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]) & (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[2], z[2])=TRUE & >(y[2], z[2])=TRUE ==> EVAL_2(x[2], y[2], z[2])_>=_NonInfC & EVAL_2(x[2], y[2], z[2])_>=_COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]) & (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(2)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]z[2] + [bni_33]y[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(2)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]z[2] + [bni_33]y[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(2)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]z[2] + [bni_33]y[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(2)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]z[2] + [bni_33]y[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[2] >= 0 & z[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(3)bni_33 + (-1)Bound*bni_33] + [bni_33]z[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(3)bni_33 + (-1)Bound*bni_33] + [bni_33]z[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 (9) (x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(3)bni_33 + (-1)Bound*bni_33] + [bni_33]z[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair COND_EVAL_2(TRUE, x, y, z) -> EVAL_2(x, -(y, 1), z) the following chains were created: 6.83/2.70 *We consider the chain EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]), COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], -(y[3], 1), z[3]), EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (&&(>(x[2], z[2]), >(y[2], z[2]))=TRUE & x[2]=x[3] & y[2]=y[3] & z[2]=z[3] & x[3]=x[2]1 & -(y[3], 1)=y[2]1 & z[3]=z[2]1 ==> COND_EVAL_2(TRUE, x[3], y[3], z[3])_>=_NonInfC & COND_EVAL_2(TRUE, x[3], y[3], z[3])_>=_EVAL_2(x[3], -(y[3], 1), z[3]) & (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[2], z[2])=TRUE & >(y[2], z[2])=TRUE ==> COND_EVAL_2(TRUE, x[2], y[2], z[2])_>=_NonInfC & COND_EVAL_2(TRUE, x[2], y[2], z[2])_>=_EVAL_2(x[2], -(y[2], 1), z[2]) & (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[2] >= 0 & z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 (9) (x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *We consider the chain EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]), COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], -(y[3], 1), z[3]), EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (&&(>(x[2], z[2]), >(y[2], z[2]))=TRUE & x[2]=x[3] & y[2]=y[3] & z[2]=z[3] & x[3]=x[4] & -(y[3], 1)=y[4] & z[3]=z[4] ==> COND_EVAL_2(TRUE, x[3], y[3], z[3])_>=_NonInfC & COND_EVAL_2(TRUE, x[3], y[3], z[3])_>=_EVAL_2(x[3], -(y[3], 1), z[3]) & (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[2], z[2])=TRUE & >(y[2], z[2])=TRUE ==> COND_EVAL_2(TRUE, x[2], y[2], z[2])_>=_NonInfC & COND_EVAL_2(TRUE, x[2], y[2], z[2])_>=_EVAL_2(x[2], -(y[2], 1), z[2]) & (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[2] + [-1] + [-1]z[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[2] >= 0 & y[2] + [-1] + [-1]z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [bni_35 + (-1)Bound*bni_35] + [(-1)bni_35]z[2] + [bni_35]y[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[2] >= 0 & z[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 (9) (x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair EVAL_2(x, y, z) -> COND_EVAL_21(&&(>(x, z), >=(z, y)), x, y, z) the following chains were created: 6.83/2.70 *We consider the chain EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]), COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (&&(>(x[4], z[4]), >=(z[4], y[4]))=TRUE & x[4]=x[5] & y[4]=y[5] & z[4]=z[5] ==> EVAL_2(x[4], y[4], z[4])_>=_NonInfC & EVAL_2(x[4], y[4], z[4])_>=_COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) & (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[4], z[4])=TRUE & >=(z[4], y[4])=TRUE ==> EVAL_2(x[4], y[4], z[4])_>=_NonInfC & EVAL_2(x[4], y[4], z[4])_>=_COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) & (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] + [bni_37]y[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] + [bni_37]y[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] + [bni_37]y[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] + [bni_37]y[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[4] >= 0 & z[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 (9) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair COND_EVAL_21(TRUE, x, y, z) -> EVAL_1(-(x, 1), y, z) the following chains were created: 6.83/2.70 *We consider the chain EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]), COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]), EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (&&(>(x[4], z[4]), >=(z[4], y[4]))=TRUE & x[4]=x[5] & y[4]=y[5] & z[4]=z[5] & -(x[5], 1)=x[0] & y[5]=y[0] & z[5]=z[0] ==> COND_EVAL_21(TRUE, x[5], y[5], z[5])_>=_NonInfC & COND_EVAL_21(TRUE, x[5], y[5], z[5])_>=_EVAL_1(-(x[5], 1), y[5], z[5]) & (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[4], z[4])=TRUE & >=(z[4], y[4])=TRUE ==> COND_EVAL_21(TRUE, x[4], y[4], z[4])_>=_NonInfC & COND_EVAL_21(TRUE, x[4], y[4], z[4])_>=_EVAL_1(-(x[4], 1), y[4], z[4]) & (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] + [bni_39]y[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] + [bni_39]y[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] + [bni_39]y[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] + [bni_39]y[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[4] >= 0 & z[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 (9) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 To summarize, we get the following constraints P__>=_ for the following pairs. 6.83/2.70 6.83/2.70 *EVAL_1(x, y, z) -> COND_EVAL_1(>(x, z), x, y, z) 6.83/2.70 6.83/2.70 *(x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [bni_29] = 0 & [(2)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]z[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [bni_29] = 0 & [(2)bni_29 + (-1)Bound*bni_29] + [bni_29]z[0] >= 0 & [(-1)bso_30] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *COND_EVAL_1(TRUE, x, y, z) -> EVAL_2(x, y, z) 6.83/2.70 6.83/2.70 *((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_31] = 0 & [(-1)bso_32] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *EVAL_2(x, y, z) -> COND_EVAL_2(&&(>(x, z), >(y, z)), x, y, z) 6.83/2.70 6.83/2.70 *(x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(3)bni_33 + (-1)Bound*bni_33] + [bni_33]z[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2])), >=) & [(3)bni_33 + (-1)Bound*bni_33] + [bni_33]z[2] >= 0 & [1 + (-1)bso_34] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *COND_EVAL_2(TRUE, x, y, z) -> EVAL_2(x, -(y, 1), z) 6.83/2.70 6.83/2.70 *(x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[2] >= 0 & z[2] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], -(y[3], 1), z[3])), >=) & [(2)bni_35 + (-1)Bound*bni_35] + [bni_35]z[2] >= 0 & [(-1)bso_36] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *EVAL_2(x, y, z) -> COND_EVAL_21(&&(>(x, z), >=(z, y)), x, y, z) 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(2)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]z[4] >= 0 & [(-1)bso_38] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *COND_EVAL_21(TRUE, x, y, z) -> EVAL_1(-(x, 1), y, z) 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(2)bni_39 + (-1)Bound*bni_39] + [(-1)bni_39]z[4] >= 0 & [(-1)bso_40] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 6.83/2.70 6.83/2.70 Using the following integer polynomial ordering the resulting constraints can be solved 6.83/2.70 6.83/2.70 Polynomial interpretation over integers[POLO]: 6.83/2.70 6.83/2.70 POL(TRUE) = 0 6.83/2.70 POL(FALSE) = [3] 6.83/2.70 POL(EVAL_1(x_1, x_2, x_3)) = [2] + [-1]x_3 + x_2 6.83/2.70 POL(COND_EVAL_1(x_1, x_2, x_3, x_4)) = [2] + [-1]x_4 + x_3 6.83/2.70 POL(>(x_1, x_2)) = [1] 6.83/2.70 POL(EVAL_2(x_1, x_2, x_3)) = [2] + [-1]x_3 + x_2 6.83/2.70 POL(COND_EVAL_2(x_1, x_2, x_3, x_4)) = [1] + [-1]x_4 + x_3 6.83/2.70 POL(&&(x_1, x_2)) = [-1] 6.83/2.70 POL(-(x_1, x_2)) = x_1 + [-1]x_2 6.83/2.70 POL(1) = [1] 6.83/2.70 POL(COND_EVAL_21(x_1, x_2, x_3, x_4)) = [2] + [-1]x_4 + x_3 6.83/2.70 POL(>=(x_1, x_2)) = [-1] 6.83/2.70 6.83/2.70 6.83/2.70 The following pairs are in P_>: 6.83/2.70 6.83/2.70 6.83/2.70 EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]) 6.83/2.70 6.83/2.70 6.83/2.70 The following pairs are in P_bound: 6.83/2.70 6.83/2.70 6.83/2.70 EVAL_2(x[2], y[2], z[2]) -> COND_EVAL_2(&&(>(x[2], z[2]), >(y[2], z[2])), x[2], y[2], z[2]) 6.83/2.70 COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], -(y[3], 1), z[3]) 6.83/2.70 6.83/2.70 6.83/2.70 The following pairs are in P_>=: 6.83/2.70 6.83/2.70 6.83/2.70 EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) 6.83/2.70 COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], -(y[3], 1), z[3]) 6.83/2.70 EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) 6.83/2.70 COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]) 6.83/2.70 6.83/2.70 6.83/2.70 At least the following rules have been oriented under context sensitive arithmetic replacement: 6.83/2.70 6.83/2.70 TRUE^1 -> &&(TRUE, TRUE)^1 6.83/2.70 FALSE^1 -> &&(TRUE, FALSE)^1 6.83/2.70 FALSE^1 -> &&(FALSE, TRUE)^1 6.83/2.70 FALSE^1 -> &&(FALSE, FALSE)^1 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (6) 6.83/2.70 Obligation: 6.83/2.70 IDP problem: 6.83/2.70 The following function symbols are pre-defined: 6.83/2.70 <<< 6.83/2.70 & ~ Bwand: (Integer, Integer) -> Integer 6.83/2.70 >= ~ Ge: (Integer, Integer) -> Boolean 6.83/2.70 | ~ Bwor: (Integer, Integer) -> Integer 6.83/2.70 / ~ Div: (Integer, Integer) -> Integer 6.83/2.70 != ~ Neq: (Integer, Integer) -> Boolean 6.83/2.70 && ~ Land: (Boolean, Boolean) -> Boolean 6.83/2.70 ! ~ Lnot: (Boolean) -> Boolean 6.83/2.70 = ~ Eq: (Integer, Integer) -> Boolean 6.83/2.70 <= ~ Le: (Integer, Integer) -> Boolean 6.83/2.70 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.83/2.70 % ~ Mod: (Integer, Integer) -> Integer 6.83/2.70 > ~ Gt: (Integer, Integer) -> Boolean 6.83/2.70 + ~ Add: (Integer, Integer) -> Integer 6.83/2.70 -1 ~ UnaryMinus: (Integer) -> Integer 6.83/2.70 < ~ Lt: (Integer, Integer) -> Boolean 6.83/2.70 || ~ Lor: (Boolean, Boolean) -> Boolean 6.83/2.70 - ~ Sub: (Integer, Integer) -> Integer 6.83/2.70 ~ ~ Bwnot: (Integer) -> Integer 6.83/2.70 * ~ Mul: (Integer, Integer) -> Integer 6.83/2.70 >>> 6.83/2.70 6.83/2.70 6.83/2.70 The following domains are used: 6.83/2.70 Integer, Boolean 6.83/2.70 6.83/2.70 R is empty. 6.83/2.70 6.83/2.70 The integer pair graph contains the following rules and edges: 6.83/2.70 (0): EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(x[0] > z[0], x[0], y[0], z[0]) 6.83/2.70 (1): COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 (3): COND_EVAL_2(TRUE, x[3], y[3], z[3]) -> EVAL_2(x[3], y[3] - 1, z[3]) 6.83/2.70 (4): EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(x[4] > z[4] && z[4] >= y[4], x[4], y[4], z[4]) 6.83/2.70 (5): COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5] - 1, y[5], z[5]) 6.83/2.70 6.83/2.70 (5) -> (0), if (x[5] - 1 ->^* x[0] & y[5] ->^* y[0] & z[5] ->^* z[0]) 6.83/2.70 (0) -> (1), if (x[0] > z[0] & x[0] ->^* x[1] & y[0] ->^* y[1] & z[0] ->^* z[1]) 6.83/2.70 (1) -> (4), if (x[1] ->^* x[4] & y[1] ->^* y[4] & z[1] ->^* z[4]) 6.83/2.70 (3) -> (4), if (x[3] ->^* x[4] & y[3] - 1 ->^* y[4] & z[3] ->^* z[4]) 6.83/2.70 (4) -> (5), if (x[4] > z[4] && z[4] >= y[4] & x[4] ->^* x[5] & y[4] ->^* y[5] & z[4] ->^* z[5]) 6.83/2.70 6.83/2.70 The set Q consists of the following terms: 6.83/2.70 eval_1(x0, x1, x2) 6.83/2.70 Cond_eval_1(TRUE, x0, x1, x2) 6.83/2.70 eval_2(x0, x1, x2) 6.83/2.70 Cond_eval_2(TRUE, x0, x1, x2) 6.83/2.70 Cond_eval_21(TRUE, x0, x1, x2) 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (7) IDependencyGraphProof (EQUIVALENT) 6.83/2.70 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (8) 6.83/2.70 Obligation: 6.83/2.70 IDP problem: 6.83/2.70 The following function symbols are pre-defined: 6.83/2.70 <<< 6.83/2.70 & ~ Bwand: (Integer, Integer) -> Integer 6.83/2.70 >= ~ Ge: (Integer, Integer) -> Boolean 6.83/2.70 | ~ Bwor: (Integer, Integer) -> Integer 6.83/2.70 / ~ Div: (Integer, Integer) -> Integer 6.83/2.70 != ~ Neq: (Integer, Integer) -> Boolean 6.83/2.70 && ~ Land: (Boolean, Boolean) -> Boolean 6.83/2.70 ! ~ Lnot: (Boolean) -> Boolean 6.83/2.70 = ~ Eq: (Integer, Integer) -> Boolean 6.83/2.70 <= ~ Le: (Integer, Integer) -> Boolean 6.83/2.70 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.83/2.70 % ~ Mod: (Integer, Integer) -> Integer 6.83/2.70 > ~ Gt: (Integer, Integer) -> Boolean 6.83/2.70 + ~ Add: (Integer, Integer) -> Integer 6.83/2.70 -1 ~ UnaryMinus: (Integer) -> Integer 6.83/2.70 < ~ Lt: (Integer, Integer) -> Boolean 6.83/2.70 || ~ Lor: (Boolean, Boolean) -> Boolean 6.83/2.70 - ~ Sub: (Integer, Integer) -> Integer 6.83/2.70 ~ ~ Bwnot: (Integer) -> Integer 6.83/2.70 * ~ Mul: (Integer, Integer) -> Integer 6.83/2.70 >>> 6.83/2.70 6.83/2.70 6.83/2.70 The following domains are used: 6.83/2.70 Integer, Boolean 6.83/2.70 6.83/2.70 R is empty. 6.83/2.70 6.83/2.70 The integer pair graph contains the following rules and edges: 6.83/2.70 (5): COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5] - 1, y[5], z[5]) 6.83/2.70 (4): EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(x[4] > z[4] && z[4] >= y[4], x[4], y[4], z[4]) 6.83/2.70 (1): COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 (0): EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(x[0] > z[0], x[0], y[0], z[0]) 6.83/2.70 6.83/2.70 (5) -> (0), if (x[5] - 1 ->^* x[0] & y[5] ->^* y[0] & z[5] ->^* z[0]) 6.83/2.70 (0) -> (1), if (x[0] > z[0] & x[0] ->^* x[1] & y[0] ->^* y[1] & z[0] ->^* z[1]) 6.83/2.70 (1) -> (4), if (x[1] ->^* x[4] & y[1] ->^* y[4] & z[1] ->^* z[4]) 6.83/2.70 (4) -> (5), if (x[4] > z[4] && z[4] >= y[4] & x[4] ->^* x[5] & y[4] ->^* y[5] & z[4] ->^* z[5]) 6.83/2.70 6.83/2.70 The set Q consists of the following terms: 6.83/2.70 eval_1(x0, x1, x2) 6.83/2.70 Cond_eval_1(TRUE, x0, x1, x2) 6.83/2.70 eval_2(x0, x1, x2) 6.83/2.70 Cond_eval_2(TRUE, x0, x1, x2) 6.83/2.70 Cond_eval_21(TRUE, x0, x1, x2) 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (9) IDPNonInfProof (SOUND) 6.83/2.70 Used the following options for this NonInfProof: 6.83/2.70 6.83/2.70 IDPGPoloSolver: 6.83/2.70 Range: [(-1,2)] 6.83/2.70 IsNat: false 6.83/2.70 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@430b8e6c 6.83/2.70 Constraint Generator: NonInfConstraintGenerator: 6.83/2.70 PathGenerator: MetricPathGenerator: 6.83/2.70 Max Left Steps: 1 6.83/2.70 Max Right Steps: 1 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 The constraints were generated the following way: 6.83/2.70 6.83/2.70 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 6.83/2.70 6.83/2.70 Note that final constraints are written in bold face. 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]) the following chains were created: 6.83/2.70 *We consider the chain EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]), COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]), EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (&&(>(x[4], z[4]), >=(z[4], y[4]))=TRUE & x[4]=x[5] & y[4]=y[5] & z[4]=z[5] & -(x[5], 1)=x[0] & y[5]=y[0] & z[5]=z[0] ==> COND_EVAL_21(TRUE, x[5], y[5], z[5])_>=_NonInfC & COND_EVAL_21(TRUE, x[5], y[5], z[5])_>=_EVAL_1(-(x[5], 1), y[5], z[5]) & (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[4], z[4])=TRUE & >=(z[4], y[4])=TRUE ==> COND_EVAL_21(TRUE, x[4], y[4], z[4])_>=_NonInfC & COND_EVAL_21(TRUE, x[4], y[4], z[4])_>=_EVAL_1(-(x[4], 1), y[4], z[4]) & (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]z[4] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]z[4] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]z[4] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)Bound*bni_24] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[4] >= 0 & z[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)Bound*bni_24] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)Bound*bni_24] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 (9) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)Bound*bni_24] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) the following chains were created: 6.83/2.70 *We consider the chain EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]), COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (&&(>(x[4], z[4]), >=(z[4], y[4]))=TRUE & x[4]=x[5] & y[4]=y[5] & z[4]=z[5] ==> EVAL_2(x[4], y[4], z[4])_>=_NonInfC & EVAL_2(x[4], y[4], z[4])_>=_COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) & (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[4], z[4])=TRUE & >=(z[4], y[4])=TRUE ==> EVAL_2(x[4], y[4], z[4])_>=_NonInfC & EVAL_2(x[4], y[4], z[4])_>=_COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) & (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]z[4] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]z[4] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[4] + [-1] + [-1]z[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]z[4] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[4] >= 0 & z[4] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)Bound*bni_26] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[4] >= 0 & z[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)Bound*bni_26] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)Bound*bni_26] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 (9) (x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)Bound*bni_26] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) the following chains were created: 6.83/2.70 *We consider the chain COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]), EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (x[1]=x[4] & y[1]=y[4] & z[1]=z[4] ==> COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_EVAL_2(x[1], y[1], z[1]) & (U^Increasing(EVAL_2(x[1], y[1], z[1])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1], z[1])_>=_EVAL_2(x[1], y[1], z[1]) & (U^Increasing(EVAL_2(x[1], y[1], z[1])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_28] = 0 & [(-1)bso_29] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_28] = 0 & [(-1)bso_29] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) ((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_28] = 0 & [(-1)bso_29] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 For Pair EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) the following chains were created: 6.83/2.70 *We consider the chain EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]), COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) which results in the following constraint: 6.83/2.70 6.83/2.70 (1) (>(x[0], z[0])=TRUE & x[0]=x[1] & y[0]=y[1] & z[0]=z[1] ==> EVAL_1(x[0], y[0], z[0])_>=_NonInfC & EVAL_1(x[0], y[0], z[0])_>=_COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) & (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.83/2.70 6.83/2.70 (2) (>(x[0], z[0])=TRUE ==> EVAL_1(x[0], y[0], z[0])_>=_NonInfC & EVAL_1(x[0], y[0], z[0])_>=_COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) & (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=)) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (3) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [(-1)bni_30 + (-1)Bound*bni_30] + [(-1)bni_30]z[0] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.83/2.70 6.83/2.70 (4) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [(-1)bni_30 + (-1)Bound*bni_30] + [(-1)bni_30]z[0] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.83/2.70 6.83/2.70 (5) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & [(-1)bni_30 + (-1)Bound*bni_30] + [(-1)bni_30]z[0] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 6.83/2.70 6.83/2.70 (6) (x[0] + [-1] + [-1]z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & 0 = 0 & [(-1)bni_30 + (-1)Bound*bni_30] + [(-1)bni_30]z[0] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.83/2.70 6.83/2.70 (7) (x[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & 0 = 0 & [(-1)Bound*bni_30] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.83/2.70 6.83/2.70 (8) (x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & 0 = 0 & [(-1)Bound*bni_30] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 (9) (x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & 0 = 0 & [(-1)Bound*bni_30] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 To summarize, we get the following constraints P__>=_ for the following pairs. 6.83/2.70 6.83/2.70 *COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]) 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)Bound*bni_24] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5], z[5])), >=) & [(-1)Bound*bni_24] + [bni_24]x[4] >= 0 & [1 + (-1)bso_25] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)Bound*bni_26] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[4] >= 0 & z[4] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4])), >=) & [(-1)Bound*bni_26] + [bni_26]x[4] >= 0 & [(-1)bso_27] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 6.83/2.70 *((U^Increasing(EVAL_2(x[1], y[1], z[1])), >=) & [bni_28] = 0 & [(-1)bso_29] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 *EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) 6.83/2.70 6.83/2.70 *(x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & 0 = 0 & [(-1)Bound*bni_30] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 *(x[0] >= 0 & z[0] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0])), >=) & 0 = 0 & [(-1)Bound*bni_30] + [bni_30]x[0] >= 0 & [(-1)bso_31] >= 0) 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 6.83/2.70 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 6.83/2.70 6.83/2.70 Using the following integer polynomial ordering the resulting constraints can be solved 6.83/2.70 6.83/2.70 Polynomial interpretation over integers[POLO]: 6.83/2.70 6.83/2.70 POL(TRUE) = 0 6.83/2.70 POL(FALSE) = [3] 6.83/2.70 POL(COND_EVAL_21(x_1, x_2, x_3, x_4)) = [-1] + [-1]x_4 + x_2 + [-1]x_1 6.83/2.70 POL(EVAL_1(x_1, x_2, x_3)) = [-1] + [-1]x_3 + x_1 6.83/2.70 POL(-(x_1, x_2)) = x_1 + [-1]x_2 6.83/2.70 POL(1) = [1] 6.83/2.70 POL(EVAL_2(x_1, x_2, x_3)) = [-1] + [-1]x_3 + x_1 6.83/2.70 POL(&&(x_1, x_2)) = 0 6.83/2.70 POL(>(x_1, x_2)) = [-1] 6.83/2.70 POL(>=(x_1, x_2)) = [-1] 6.83/2.70 POL(COND_EVAL_1(x_1, x_2, x_3, x_4)) = [-1] + [-1]x_4 + x_2 6.83/2.70 6.83/2.70 6.83/2.70 The following pairs are in P_>: 6.83/2.70 6.83/2.70 6.83/2.70 COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]) 6.83/2.70 6.83/2.70 6.83/2.70 The following pairs are in P_bound: 6.83/2.70 6.83/2.70 6.83/2.70 COND_EVAL_21(TRUE, x[5], y[5], z[5]) -> EVAL_1(-(x[5], 1), y[5], z[5]) 6.83/2.70 EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) 6.83/2.70 EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) 6.83/2.70 6.83/2.70 6.83/2.70 The following pairs are in P_>=: 6.83/2.70 6.83/2.70 6.83/2.70 EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(&&(>(x[4], z[4]), >=(z[4], y[4])), x[4], y[4], z[4]) 6.83/2.70 COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(>(x[0], z[0]), x[0], y[0], z[0]) 6.83/2.70 6.83/2.70 6.83/2.70 At least the following rules have been oriented under context sensitive arithmetic replacement: 6.83/2.70 6.83/2.70 TRUE^1 -> &&(TRUE, TRUE)^1 6.83/2.70 FALSE^1 -> &&(TRUE, FALSE)^1 6.83/2.70 FALSE^1 -> &&(FALSE, TRUE)^1 6.83/2.70 FALSE^1 -> &&(FALSE, FALSE)^1 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (10) 6.83/2.70 Obligation: 6.83/2.70 IDP problem: 6.83/2.70 The following function symbols are pre-defined: 6.83/2.70 <<< 6.83/2.70 & ~ Bwand: (Integer, Integer) -> Integer 6.83/2.70 >= ~ Ge: (Integer, Integer) -> Boolean 6.83/2.70 | ~ Bwor: (Integer, Integer) -> Integer 6.83/2.70 / ~ Div: (Integer, Integer) -> Integer 6.83/2.70 != ~ Neq: (Integer, Integer) -> Boolean 6.83/2.70 && ~ Land: (Boolean, Boolean) -> Boolean 6.83/2.70 ! ~ Lnot: (Boolean) -> Boolean 6.83/2.70 = ~ Eq: (Integer, Integer) -> Boolean 6.83/2.70 <= ~ Le: (Integer, Integer) -> Boolean 6.83/2.70 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.83/2.70 % ~ Mod: (Integer, Integer) -> Integer 6.83/2.70 > ~ Gt: (Integer, Integer) -> Boolean 6.83/2.70 + ~ Add: (Integer, Integer) -> Integer 6.83/2.70 -1 ~ UnaryMinus: (Integer) -> Integer 6.83/2.70 < ~ Lt: (Integer, Integer) -> Boolean 6.83/2.70 || ~ Lor: (Boolean, Boolean) -> Boolean 6.83/2.70 - ~ Sub: (Integer, Integer) -> Integer 6.83/2.70 ~ ~ Bwnot: (Integer) -> Integer 6.83/2.70 * ~ Mul: (Integer, Integer) -> Integer 6.83/2.70 >>> 6.83/2.70 6.83/2.70 6.83/2.70 The following domains are used: 6.83/2.70 Boolean, Integer 6.83/2.70 6.83/2.70 R is empty. 6.83/2.70 6.83/2.70 The integer pair graph contains the following rules and edges: 6.83/2.70 (4): EVAL_2(x[4], y[4], z[4]) -> COND_EVAL_21(x[4] > z[4] && z[4] >= y[4], x[4], y[4], z[4]) 6.83/2.70 (1): COND_EVAL_1(TRUE, x[1], y[1], z[1]) -> EVAL_2(x[1], y[1], z[1]) 6.83/2.70 (0): EVAL_1(x[0], y[0], z[0]) -> COND_EVAL_1(x[0] > z[0], x[0], y[0], z[0]) 6.83/2.70 6.83/2.70 (0) -> (1), if (x[0] > z[0] & x[0] ->^* x[1] & y[0] ->^* y[1] & z[0] ->^* z[1]) 6.83/2.70 (1) -> (4), if (x[1] ->^* x[4] & y[1] ->^* y[4] & z[1] ->^* z[4]) 6.83/2.70 6.83/2.70 The set Q consists of the following terms: 6.83/2.70 eval_1(x0, x1, x2) 6.83/2.70 Cond_eval_1(TRUE, x0, x1, x2) 6.83/2.70 eval_2(x0, x1, x2) 6.83/2.70 Cond_eval_2(TRUE, x0, x1, x2) 6.83/2.70 Cond_eval_21(TRUE, x0, x1, x2) 6.83/2.70 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (11) IDependencyGraphProof (EQUIVALENT) 6.83/2.70 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. 6.83/2.70 ---------------------------------------- 6.83/2.70 6.83/2.70 (12) 6.83/2.70 TRUE 6.83/2.75 EOF