2.81/2.81 YES 2.81/2.81 2.81/2.81 DP problem for innermost termination. 2.81/2.81 P = 2.81/2.81 eval_2#(x, y, z) -> eval_1#(x - 1, y, z) [x > z && z >= y] 2.81/2.81 eval_2#(I0, I1, I2) -> eval_2#(I0, I1 - 1, I2) [I0 > I2 && I1 > I2] 2.81/2.81 eval_1#(I3, I4, I5) -> eval_2#(I3, I4, I5) [I3 > I5] 2.81/2.81 R = 2.81/2.81 eval_2(x, y, z) -> eval_1(x - 1, y, z) [x > z && z >= y] 2.81/2.81 eval_2(I0, I1, I2) -> eval_2(I0, I1 - 1, I2) [I0 > I2 && I1 > I2] 2.81/2.81 eval_1(I3, I4, I5) -> eval_2(I3, I4, I5) [I3 > I5] 2.81/2.81 2.81/2.81 We use the reverse value criterion with the projection function NU: 2.81/2.81 NU[eval_1#(z1,z2,z3)] = z1 + -1 * z3 2.81/2.81 NU[eval_2#(z1,z2,z3)] = z1 - 1 + -1 * z3 2.81/2.81 2.81/2.81 This gives the following inequalities: 2.81/2.81 x > z && z >= y ==> x - 1 + -1 * z >= x - 1 + -1 * z 2.81/2.81 I0 > I2 && I1 > I2 ==> I0 - 1 + -1 * I2 >= I0 - 1 + -1 * I2 2.81/2.81 I3 > I5 ==> I3 + -1 * I5 > I3 - 1 + -1 * I5 with I3 + -1 * I5 >= 0 2.81/2.81 2.81/2.81 We remove all the strictly oriented dependency pairs. 2.81/2.81 2.81/2.81 DP problem for innermost termination. 2.81/2.81 P = 2.81/2.81 eval_2#(x, y, z) -> eval_1#(x - 1, y, z) [x > z && z >= y] 2.81/2.81 eval_2#(I0, I1, I2) -> eval_2#(I0, I1 - 1, I2) [I0 > I2 && I1 > I2] 2.81/2.81 R = 2.81/2.81 eval_2(x, y, z) -> eval_1(x - 1, y, z) [x > z && z >= y] 2.81/2.81 eval_2(I0, I1, I2) -> eval_2(I0, I1 - 1, I2) [I0 > I2 && I1 > I2] 2.81/2.81 eval_1(I3, I4, I5) -> eval_2(I3, I4, I5) [I3 > I5] 2.81/2.81 2.81/2.81 The dependency graph for this problem is: 2.81/2.81 0 -> 2.81/2.81 1 -> 0, 1 2.81/2.81 Where: 2.81/2.81 0) eval_2#(x, y, z) -> eval_1#(x - 1, y, z) [x > z && z >= y] 2.81/2.81 1) eval_2#(I0, I1, I2) -> eval_2#(I0, I1 - 1, I2) [I0 > I2 && I1 > I2] 2.81/2.81 2.81/2.81 We have the following SCCs. 2.81/2.81 { 1 } 2.81/2.81 2.81/2.81 DP problem for innermost termination. 2.81/2.81 P = 2.81/2.81 eval_2#(I0, I1, I2) -> eval_2#(I0, I1 - 1, I2) [I0 > I2 && I1 > I2] 2.81/2.81 R = 2.81/2.81 eval_2(x, y, z) -> eval_1(x - 1, y, z) [x > z && z >= y] 2.81/2.81 eval_2(I0, I1, I2) -> eval_2(I0, I1 - 1, I2) [I0 > I2 && I1 > I2] 2.81/2.81 eval_1(I3, I4, I5) -> eval_2(I3, I4, I5) [I3 > I5] 2.81/2.81 2.81/2.81 We use the reverse value criterion with the projection function NU: 2.81/2.81 NU[eval_2#(z1,z2,z3)] = z2 + -1 * z3 2.81/2.81 2.81/2.81 This gives the following inequalities: 2.81/2.81 I0 > I2 && I1 > I2 ==> I1 + -1 * I2 > I1 - 1 + -1 * I2 with I1 + -1 * I2 >= 0 2.81/2.81 2.81/2.81 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 2.81/5.79 EOF