4.70/2.58 YES 4.70/2.60 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 4.70/2.60 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.70/2.60 4.70/2.60 4.70/2.60 Termination of the given ITRS could be proven: 4.70/2.60 4.70/2.60 (0) ITRS 4.70/2.60 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 4.70/2.60 (2) IDP 4.70/2.60 (3) UsableRulesProof [EQUIVALENT, 0 ms] 4.70/2.60 (4) IDP 4.70/2.60 (5) IDependencyGraphProof [EQUIVALENT, 0 ms] 4.70/2.60 (6) IDP 4.70/2.60 (7) IDPNonInfProof [SOUND, 245 ms] 4.70/2.60 (8) IDP 4.70/2.60 (9) IDependencyGraphProof [EQUIVALENT, 0 ms] 4.70/2.60 (10) TRUE 4.70/2.60 4.70/2.60 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (0) 4.70/2.60 Obligation: 4.70/2.60 ITRS problem: 4.70/2.60 4.70/2.60 The following function symbols are pre-defined: 4.70/2.60 <<< 4.70/2.60 & ~ Bwand: (Integer, Integer) -> Integer 4.70/2.60 >= ~ Ge: (Integer, Integer) -> Boolean 4.70/2.60 / ~ Div: (Integer, Integer) -> Integer 4.70/2.60 | ~ Bwor: (Integer, Integer) -> Integer 4.70/2.60 != ~ Neq: (Integer, Integer) -> Boolean 4.70/2.60 && ~ Land: (Boolean, Boolean) -> Boolean 4.70/2.60 ! ~ Lnot: (Boolean) -> Boolean 4.70/2.60 = ~ Eq: (Integer, Integer) -> Boolean 4.70/2.60 <= ~ Le: (Integer, Integer) -> Boolean 4.70/2.60 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.70/2.60 % ~ Mod: (Integer, Integer) -> Integer 4.70/2.60 > ~ Gt: (Integer, Integer) -> Boolean 4.70/2.60 + ~ Add: (Integer, Integer) -> Integer 4.70/2.60 -1 ~ UnaryMinus: (Integer) -> Integer 4.70/2.60 < ~ Lt: (Integer, Integer) -> Boolean 4.70/2.60 || ~ Lor: (Boolean, Boolean) -> Boolean 4.70/2.60 - ~ Sub: (Integer, Integer) -> Integer 4.70/2.60 ~ ~ Bwnot: (Integer) -> Integer 4.70/2.60 * ~ Mul: (Integer, Integer) -> Integer 4.70/2.60 >>> 4.70/2.60 4.70/2.60 The TRS R consists of the following rules: 4.70/2.60 pow(b, e) -> condLoop(e > 0, b, e, 1) 4.70/2.60 condLoop(FALSE, b, e, r) -> r 4.70/2.60 condLoop(TRUE, b, e, r) -> condMod(e % 2 = 1, b, e, r) 4.70/2.60 condMod(FALSE, b, e, r) -> sqBase(b, e, r) 4.70/2.60 condMod(TRUE, b, e, r) -> sqBase(b, e, r * b) 4.70/2.60 sqBase(b, e, r) -> halfExp(b * b, e, r) 4.70/2.60 halfExp(b, e, r) -> condLoop(e > 0, b, e / 2, r) 4.70/2.60 The set Q consists of the following terms: 4.70/2.60 pow(x0, x1) 4.70/2.60 condLoop(FALSE, x0, x1, x2) 4.70/2.60 condLoop(TRUE, x0, x1, x2) 4.70/2.60 condMod(FALSE, x0, x1, x2) 4.70/2.60 condMod(TRUE, x0, x1, x2) 4.70/2.60 sqBase(x0, x1, x2) 4.70/2.60 halfExp(x0, x1, x2) 4.70/2.60 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (1) ITRStoIDPProof (EQUIVALENT) 4.70/2.60 Added dependency pairs 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (2) 4.70/2.60 Obligation: 4.70/2.60 IDP problem: 4.70/2.60 The following function symbols are pre-defined: 4.70/2.60 <<< 4.70/2.60 & ~ Bwand: (Integer, Integer) -> Integer 4.70/2.60 >= ~ Ge: (Integer, Integer) -> Boolean 4.70/2.60 / ~ Div: (Integer, Integer) -> Integer 4.70/2.60 | ~ Bwor: (Integer, Integer) -> Integer 4.70/2.60 != ~ Neq: (Integer, Integer) -> Boolean 4.70/2.60 && ~ Land: (Boolean, Boolean) -> Boolean 4.70/2.60 ! ~ Lnot: (Boolean) -> Boolean 4.70/2.60 = ~ Eq: (Integer, Integer) -> Boolean 4.70/2.60 <= ~ Le: (Integer, Integer) -> Boolean 4.70/2.60 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.70/2.60 % ~ Mod: (Integer, Integer) -> Integer 4.70/2.60 > ~ Gt: (Integer, Integer) -> Boolean 4.70/2.60 + ~ Add: (Integer, Integer) -> Integer 4.70/2.60 -1 ~ UnaryMinus: (Integer) -> Integer 4.70/2.60 < ~ Lt: (Integer, Integer) -> Boolean 4.70/2.60 || ~ Lor: (Boolean, Boolean) -> Boolean 4.70/2.60 - ~ Sub: (Integer, Integer) -> Integer 4.70/2.60 ~ ~ Bwnot: (Integer) -> Integer 4.70/2.60 * ~ Mul: (Integer, Integer) -> Integer 4.70/2.60 >>> 4.70/2.60 4.70/2.60 4.70/2.60 The following domains are used: 4.70/2.60 Integer 4.70/2.60 4.70/2.60 The ITRS R consists of the following rules: 4.70/2.60 pow(b, e) -> condLoop(e > 0, b, e, 1) 4.70/2.60 condLoop(FALSE, b, e, r) -> r 4.70/2.60 condLoop(TRUE, b, e, r) -> condMod(e % 2 = 1, b, e, r) 4.70/2.60 condMod(FALSE, b, e, r) -> sqBase(b, e, r) 4.70/2.60 condMod(TRUE, b, e, r) -> sqBase(b, e, r * b) 4.70/2.60 sqBase(b, e, r) -> halfExp(b * b, e, r) 4.70/2.60 halfExp(b, e, r) -> condLoop(e > 0, b, e / 2, r) 4.70/2.60 4.70/2.60 The integer pair graph contains the following rules and edges: 4.70/2.60 (0): POW(b[0], e[0]) -> CONDLOOP(e[0] > 0, b[0], e[0], 1) 4.70/2.60 (1): CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(e[1] % 2 = 1, b[1], e[1], r[1]) 4.70/2.60 (2): CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) 4.70/2.60 (3): CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], r[3] * b[3]) 4.70/2.60 (4): SQBASE(b[4], e[4], r[4]) -> HALFEXP(b[4] * b[4], e[4], r[4]) 4.70/2.60 (5): HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(e[5] > 0, b[5], e[5] / 2, r[5]) 4.70/2.60 4.70/2.60 (0) -> (1), if (e[0] > 0 & b[0] ->^* b[1] & e[0] ->^* e[1] & 1 ->^* r[1]) 4.70/2.60 (1) -> (2), if (e[1] % 2 = 1 ->^* FALSE & b[1] ->^* b[2] & e[1] ->^* e[2] & r[1] ->^* r[2]) 4.70/2.60 (1) -> (3), if (e[1] % 2 = 1 & b[1] ->^* b[3] & e[1] ->^* e[3] & r[1] ->^* r[3]) 4.70/2.60 (2) -> (4), if (b[2] ->^* b[4] & e[2] ->^* e[4] & r[2] ->^* r[4]) 4.70/2.60 (3) -> (4), if (b[3] ->^* b[4] & e[3] ->^* e[4] & r[3] * b[3] ->^* r[4]) 4.70/2.60 (4) -> (5), if (b[4] * b[4] ->^* b[5] & e[4] ->^* e[5] & r[4] ->^* r[5]) 4.70/2.60 (5) -> (1), if (e[5] > 0 & b[5] ->^* b[1] & e[5] / 2 ->^* e[1] & r[5] ->^* r[1]) 4.70/2.60 4.70/2.60 The set Q consists of the following terms: 4.70/2.60 pow(x0, x1) 4.70/2.60 condLoop(FALSE, x0, x1, x2) 4.70/2.60 condLoop(TRUE, x0, x1, x2) 4.70/2.60 condMod(FALSE, x0, x1, x2) 4.70/2.60 condMod(TRUE, x0, x1, x2) 4.70/2.60 sqBase(x0, x1, x2) 4.70/2.60 halfExp(x0, x1, x2) 4.70/2.60 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (3) UsableRulesProof (EQUIVALENT) 4.70/2.60 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (4) 4.70/2.60 Obligation: 4.70/2.60 IDP problem: 4.70/2.60 The following function symbols are pre-defined: 4.70/2.60 <<< 4.70/2.60 & ~ Bwand: (Integer, Integer) -> Integer 4.70/2.60 >= ~ Ge: (Integer, Integer) -> Boolean 4.70/2.60 / ~ Div: (Integer, Integer) -> Integer 4.70/2.60 | ~ Bwor: (Integer, Integer) -> Integer 4.70/2.60 != ~ Neq: (Integer, Integer) -> Boolean 4.70/2.60 && ~ Land: (Boolean, Boolean) -> Boolean 4.70/2.60 ! ~ Lnot: (Boolean) -> Boolean 4.70/2.60 = ~ Eq: (Integer, Integer) -> Boolean 4.70/2.60 <= ~ Le: (Integer, Integer) -> Boolean 4.70/2.60 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.70/2.60 % ~ Mod: (Integer, Integer) -> Integer 4.70/2.60 > ~ Gt: (Integer, Integer) -> Boolean 4.70/2.60 + ~ Add: (Integer, Integer) -> Integer 4.70/2.60 -1 ~ UnaryMinus: (Integer) -> Integer 4.70/2.60 < ~ Lt: (Integer, Integer) -> Boolean 4.70/2.60 || ~ Lor: (Boolean, Boolean) -> Boolean 4.70/2.60 - ~ Sub: (Integer, Integer) -> Integer 4.70/2.60 ~ ~ Bwnot: (Integer) -> Integer 4.70/2.60 * ~ Mul: (Integer, Integer) -> Integer 4.70/2.60 >>> 4.70/2.60 4.70/2.60 4.70/2.60 The following domains are used: 4.70/2.60 Integer 4.70/2.60 4.70/2.60 R is empty. 4.70/2.60 4.70/2.60 The integer pair graph contains the following rules and edges: 4.70/2.60 (0): POW(b[0], e[0]) -> CONDLOOP(e[0] > 0, b[0], e[0], 1) 4.70/2.60 (1): CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(e[1] % 2 = 1, b[1], e[1], r[1]) 4.70/2.60 (2): CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) 4.70/2.60 (3): CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], r[3] * b[3]) 4.70/2.60 (4): SQBASE(b[4], e[4], r[4]) -> HALFEXP(b[4] * b[4], e[4], r[4]) 4.70/2.60 (5): HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(e[5] > 0, b[5], e[5] / 2, r[5]) 4.70/2.60 4.70/2.60 (0) -> (1), if (e[0] > 0 & b[0] ->^* b[1] & e[0] ->^* e[1] & 1 ->^* r[1]) 4.70/2.60 (1) -> (2), if (e[1] % 2 = 1 ->^* FALSE & b[1] ->^* b[2] & e[1] ->^* e[2] & r[1] ->^* r[2]) 4.70/2.60 (1) -> (3), if (e[1] % 2 = 1 & b[1] ->^* b[3] & e[1] ->^* e[3] & r[1] ->^* r[3]) 4.70/2.60 (2) -> (4), if (b[2] ->^* b[4] & e[2] ->^* e[4] & r[2] ->^* r[4]) 4.70/2.60 (3) -> (4), if (b[3] ->^* b[4] & e[3] ->^* e[4] & r[3] * b[3] ->^* r[4]) 4.70/2.60 (4) -> (5), if (b[4] * b[4] ->^* b[5] & e[4] ->^* e[5] & r[4] ->^* r[5]) 4.70/2.60 (5) -> (1), if (e[5] > 0 & b[5] ->^* b[1] & e[5] / 2 ->^* e[1] & r[5] ->^* r[1]) 4.70/2.60 4.70/2.60 The set Q consists of the following terms: 4.70/2.60 pow(x0, x1) 4.70/2.60 condLoop(FALSE, x0, x1, x2) 4.70/2.60 condLoop(TRUE, x0, x1, x2) 4.70/2.60 condMod(FALSE, x0, x1, x2) 4.70/2.60 condMod(TRUE, x0, x1, x2) 4.70/2.60 sqBase(x0, x1, x2) 4.70/2.60 halfExp(x0, x1, x2) 4.70/2.60 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (5) IDependencyGraphProof (EQUIVALENT) 4.70/2.60 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (6) 4.70/2.60 Obligation: 4.70/2.60 IDP problem: 4.70/2.60 The following function symbols are pre-defined: 4.70/2.60 <<< 4.70/2.60 & ~ Bwand: (Integer, Integer) -> Integer 4.70/2.60 >= ~ Ge: (Integer, Integer) -> Boolean 4.70/2.60 / ~ Div: (Integer, Integer) -> Integer 4.70/2.60 | ~ Bwor: (Integer, Integer) -> Integer 4.70/2.60 != ~ Neq: (Integer, Integer) -> Boolean 4.70/2.60 && ~ Land: (Boolean, Boolean) -> Boolean 4.70/2.60 ! ~ Lnot: (Boolean) -> Boolean 4.70/2.60 = ~ Eq: (Integer, Integer) -> Boolean 4.70/2.60 <= ~ Le: (Integer, Integer) -> Boolean 4.70/2.60 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.70/2.60 % ~ Mod: (Integer, Integer) -> Integer 4.70/2.60 > ~ Gt: (Integer, Integer) -> Boolean 4.70/2.60 + ~ Add: (Integer, Integer) -> Integer 4.70/2.60 -1 ~ UnaryMinus: (Integer) -> Integer 4.70/2.60 < ~ Lt: (Integer, Integer) -> Boolean 4.70/2.60 || ~ Lor: (Boolean, Boolean) -> Boolean 4.70/2.60 - ~ Sub: (Integer, Integer) -> Integer 4.70/2.60 ~ ~ Bwnot: (Integer) -> Integer 4.70/2.60 * ~ Mul: (Integer, Integer) -> Integer 4.70/2.60 >>> 4.70/2.60 4.70/2.60 4.70/2.60 The following domains are used: 4.70/2.60 Integer 4.70/2.60 4.70/2.60 R is empty. 4.70/2.60 4.70/2.60 The integer pair graph contains the following rules and edges: 4.70/2.60 (3): CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], r[3] * b[3]) 4.70/2.60 (5): HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(e[5] > 0, b[5], e[5] / 2, r[5]) 4.70/2.60 (4): SQBASE(b[4], e[4], r[4]) -> HALFEXP(b[4] * b[4], e[4], r[4]) 4.70/2.60 (2): CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) 4.70/2.60 (1): CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(e[1] % 2 = 1, b[1], e[1], r[1]) 4.70/2.60 4.70/2.60 (5) -> (1), if (e[5] > 0 & b[5] ->^* b[1] & e[5] / 2 ->^* e[1] & r[5] ->^* r[1]) 4.70/2.60 (1) -> (2), if (e[1] % 2 = 1 ->^* FALSE & b[1] ->^* b[2] & e[1] ->^* e[2] & r[1] ->^* r[2]) 4.70/2.60 (1) -> (3), if (e[1] % 2 = 1 & b[1] ->^* b[3] & e[1] ->^* e[3] & r[1] ->^* r[3]) 4.70/2.60 (2) -> (4), if (b[2] ->^* b[4] & e[2] ->^* e[4] & r[2] ->^* r[4]) 4.70/2.60 (3) -> (4), if (b[3] ->^* b[4] & e[3] ->^* e[4] & r[3] * b[3] ->^* r[4]) 4.70/2.60 (4) -> (5), if (b[4] * b[4] ->^* b[5] & e[4] ->^* e[5] & r[4] ->^* r[5]) 4.70/2.60 4.70/2.60 The set Q consists of the following terms: 4.70/2.60 pow(x0, x1) 4.70/2.60 condLoop(FALSE, x0, x1, x2) 4.70/2.60 condLoop(TRUE, x0, x1, x2) 4.70/2.60 condMod(FALSE, x0, x1, x2) 4.70/2.60 condMod(TRUE, x0, x1, x2) 4.70/2.60 sqBase(x0, x1, x2) 4.70/2.60 halfExp(x0, x1, x2) 4.70/2.60 4.70/2.60 ---------------------------------------- 4.70/2.60 4.70/2.60 (7) IDPNonInfProof (SOUND) 4.70/2.60 Used the following options for this NonInfProof: 4.70/2.60 4.70/2.60 IDPGPoloSolver: 4.70/2.60 Range: [(-1,2)] 4.70/2.60 IsNat: false 4.70/2.60 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@30b72e9a 4.70/2.60 Constraint Generator: NonInfConstraintGenerator: 4.70/2.60 PathGenerator: MetricPathGenerator: 4.70/2.60 Max Left Steps: 1 4.70/2.60 Max Right Steps: 1 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 The constraints were generated the following way: 4.70/2.60 4.70/2.60 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 4.70/2.60 4.70/2.60 Note that final constraints are written in bold face. 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 For Pair CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], *(r[3], b[3])) the following chains were created: 4.70/2.60 *We consider the chain CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]), CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], *(r[3], b[3])), SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]) which results in the following constraint: 4.70/2.60 4.70/2.60 (1) (=(%(e[1], 2), 1)=TRUE & b[1]=b[3] & e[1]=e[3] & r[1]=r[3] & b[3]=b[4] & e[3]=e[4] & *(r[3], b[3])=r[4] ==> CONDMOD(TRUE, b[3], e[3], r[3])_>=_NonInfC & CONDMOD(TRUE, b[3], e[3], r[3])_>=_SQBASE(b[3], e[3], *(r[3], b[3])) & (U^Increasing(SQBASE(b[3], e[3], *(r[3], b[3]))), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 4.70/2.60 4.70/2.60 (2) (>=(%(e[1], 2), 1)=TRUE & <=(%(e[1], 2), 1)=TRUE ==> CONDMOD(TRUE, b[1], e[1], r[1])_>=_NonInfC & CONDMOD(TRUE, b[1], e[1], r[1])_>=_SQBASE(b[1], e[1], *(r[1], b[1])) & (U^Increasing(SQBASE(b[3], e[3], *(r[3], b[3]))), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.70/2.60 4.70/2.60 (3) (max{[2], [-2]} + [-1] >= 0 & [1] + [-1]min{[2], [-2]} >= 0 ==> (U^Increasing(SQBASE(b[3], e[3], *(r[3], b[3]))), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]e[1] >= 0 & [(-1)bso_24] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.70/2.60 4.70/2.60 (4) (max{[2], [-2]} + [-1] >= 0 & [1] + [-1]min{[2], [-2]} >= 0 ==> (U^Increasing(SQBASE(b[3], e[3], *(r[3], b[3]))), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]e[1] >= 0 & [(-1)bso_24] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.70/2.60 4.70/2.60 (5) ([4] >= 0 & [1] >= 0 & [3] >= 0 ==> (U^Increasing(SQBASE(b[3], e[3], *(r[3], b[3]))), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]e[1] >= 0 & [(-1)bso_24] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (5) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint: 4.70/2.60 4.70/2.60 (6) ([1] >= 0 & [1] >= 0 & [1] >= 0 ==> (U^Increasing(SQBASE(b[3], e[3], *(r[3], b[3]))), >=) & 0 = 0 & [bni_23] = 0 & 0 = 0 & [(-1)bni_23 + (-1)Bound*bni_23] >= 0 & 0 = 0 & 0 = 0 & [(-1)bso_24] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 For Pair HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]) the following chains were created: 4.70/2.60 *We consider the chain SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]), HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]), CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) which results in the following constraint: 4.70/2.60 4.70/2.60 (1) (*(b[4], b[4])=b[5] & e[4]=e[5] & r[4]=r[5] & >(e[5], 0)=TRUE & b[5]=b[1] & /(e[5], 2)=e[1] & r[5]=r[1] ==> HALFEXP(b[5], e[5], r[5])_>=_NonInfC & HALFEXP(b[5], e[5], r[5])_>=_CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]) & (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 4.70/2.60 4.70/2.60 (2) (>(e[5], 0)=TRUE ==> HALFEXP(*(b[4], b[4]), e[5], r[4])_>=_NonInfC & HALFEXP(*(b[4], b[4]), e[5], r[4])_>=_CONDLOOP(>(e[5], 0), *(b[4], b[4]), /(e[5], 2), r[4]) & (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.70/2.60 4.70/2.60 (3) (e[5] + [-1] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] + e[5] + [-1]max{e[5], [-1]e[5]} >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.70/2.60 4.70/2.60 (4) (e[5] + [-1] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] + e[5] + [-1]max{e[5], [-1]e[5]} >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.70/2.60 4.70/2.60 (5) (e[5] + [-1] >= 0 & [2]e[5] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 4.70/2.60 4.70/2.60 (6) (e[5] + [-1] >= 0 & [2]e[5] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & 0 = 0 & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 4.70/2.60 4.70/2.60 (7) (e[5] + [-1] >= 0 & [2]e[5] >= 0 & b[4] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & 0 = 0 & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.70/2.60 4.70/2.60 (8) (e[5] + [-1] >= 0 & [2]e[5] >= 0 & b[4] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & 0 = 0 & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (7) using rule (IDP_POLY_GCD) which results in the following new constraint: 4.70/2.60 4.70/2.60 (9) (e[5] + [-1] >= 0 & b[4] >= 0 & e[5] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & 0 = 0 & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (8) using rule (IDP_POLY_GCD) which results in the following new constraint: 4.70/2.60 4.70/2.60 (10) (e[5] + [-1] >= 0 & b[4] >= 0 & e[5] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & 0 = 0 & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 For Pair SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]) the following chains were created: 4.70/2.60 *We consider the chain CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]), SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]), HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]) which results in the following constraint: 4.70/2.60 4.70/2.60 (1) (b[2]=b[4] & e[2]=e[4] & r[2]=r[4] & *(b[4], b[4])=b[5] & e[4]=e[5] & r[4]=r[5] ==> SQBASE(b[4], e[4], r[4])_>=_NonInfC & SQBASE(b[4], e[4], r[4])_>=_HALFEXP(*(b[4], b[4]), e[4], r[4]) & (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 4.70/2.60 4.70/2.60 (2) (SQBASE(b[2], e[2], r[2])_>=_NonInfC & SQBASE(b[2], e[2], r[2])_>=_HALFEXP(*(b[2], b[2]), e[2], r[2]) & (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.70/2.60 4.70/2.60 (3) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.70/2.60 4.70/2.60 (4) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.70/2.60 4.70/2.60 (5) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 4.70/2.60 4.70/2.60 (6) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 4.70/2.60 4.70/2.60 (7) (b[2] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 (8) (b[2] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 *We consider the chain CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], *(r[3], b[3])), SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]), HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]) which results in the following constraint: 4.70/2.60 4.70/2.60 (1) (b[3]=b[4] & e[3]=e[4] & *(r[3], b[3])=r[4] & *(b[4], b[4])=b[5] & e[4]=e[5] & r[4]=r[5] ==> SQBASE(b[4], e[4], r[4])_>=_NonInfC & SQBASE(b[4], e[4], r[4])_>=_HALFEXP(*(b[4], b[4]), e[4], r[4]) & (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 4.70/2.60 4.70/2.60 (2) (SQBASE(b[3], e[3], *(r[3], b[3]))_>=_NonInfC & SQBASE(b[3], e[3], *(r[3], b[3]))_>=_HALFEXP(*(b[3], b[3]), e[3], *(r[3], b[3])) & (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.70/2.60 4.70/2.60 (3) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.70/2.60 4.70/2.60 (4) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.70/2.60 4.70/2.60 (5) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 4.70/2.60 4.70/2.60 (6) ((U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 4.70/2.60 4.70/2.60 (7) (b[3] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 (8) (b[3] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 For Pair CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) the following chains were created: 4.70/2.60 *We consider the chain CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]), SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]) which results in the following constraint: 4.70/2.60 4.70/2.60 (1) (b[2]=b[4] & e[2]=e[4] & r[2]=r[4] ==> CONDMOD(FALSE, b[2], e[2], r[2])_>=_NonInfC & CONDMOD(FALSE, b[2], e[2], r[2])_>=_SQBASE(b[2], e[2], r[2]) & (U^Increasing(SQBASE(b[2], e[2], r[2])), >=)) 4.70/2.60 4.70/2.60 4.70/2.60 4.70/2.60 We simplified constraint (1) using rule (IV) which results in the following new constraint: 4.70/2.60 4.70/2.60 (2) (CONDMOD(FALSE, b[2], e[2], r[2])_>=_NonInfC & CONDMOD(FALSE, b[2], e[2], r[2])_>=_SQBASE(b[2], e[2], r[2]) & (U^Increasing(SQBASE(b[2], e[2], r[2])), >=)) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.92/2.60 4.92/2.60 (3) ((U^Increasing(SQBASE(b[2], e[2], r[2])), >=) & [bni_32] = 0 & [(-1)bso_33] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.92/2.60 4.92/2.60 (4) ((U^Increasing(SQBASE(b[2], e[2], r[2])), >=) & [bni_32] = 0 & [(-1)bso_33] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.92/2.60 4.92/2.60 (5) ((U^Increasing(SQBASE(b[2], e[2], r[2])), >=) & [bni_32] = 0 & [(-1)bso_33] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 For Pair CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) the following chains were created: 4.92/2.60 *We consider the chain CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]), CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) which results in the following constraint: 4.92/2.60 4.92/2.60 (1) (=(%(e[1], 2), 1)=FALSE & b[1]=b[2] & e[1]=e[2] & r[1]=r[2] ==> CONDLOOP(TRUE, b[1], e[1], r[1])_>=_NonInfC & CONDLOOP(TRUE, b[1], e[1], r[1])_>=_CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) & (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=)) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints: 4.92/2.60 4.92/2.60 (2) (<(%(e[1], 2), 1)=TRUE ==> CONDLOOP(TRUE, b[1], e[1], r[1])_>=_NonInfC & CONDLOOP(TRUE, b[1], e[1], r[1])_>=_CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) & (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=)) 4.92/2.60 4.92/2.60 (3) (>(%(e[1], 2), 1)=TRUE ==> CONDLOOP(TRUE, b[1], e[1], r[1])_>=_NonInfC & CONDLOOP(TRUE, b[1], e[1], r[1])_>=_CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) & (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=)) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.92/2.60 4.92/2.60 (4) ([-1]min{[2], [-2]} >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (3) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.92/2.60 4.92/2.60 (5) (max{[2], [-2]} + [-2] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (4) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.92/2.60 4.92/2.60 (6) ([-1]min{[2], [-2]} >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.92/2.60 4.92/2.60 (7) (max{[2], [-2]} + [-2] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.92/2.60 4.92/2.60 (8) ([4] >= 0 & [2] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (7) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.92/2.60 4.92/2.60 (9) ([4] >= 0 & 0 >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (8) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint: 4.92/2.60 4.92/2.60 (10) ([1] >= 0 & [1] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & 0 = 0 & [bni_34] = 0 & 0 = 0 & [(-1)bni_34 + (-1)Bound*bni_34] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (9) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint: 4.92/2.60 4.92/2.60 (11) (0 >= 0 & [1] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & 0 = 0 & [bni_34] = 0 & 0 = 0 & [(-1)bni_34 + (-1)Bound*bni_34] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 *We consider the chain CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]), CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], *(r[3], b[3])) which results in the following constraint: 4.92/2.60 4.92/2.60 (1) (=(%(e[1], 2), 1)=TRUE & b[1]=b[3] & e[1]=e[3] & r[1]=r[3] ==> CONDLOOP(TRUE, b[1], e[1], r[1])_>=_NonInfC & CONDLOOP(TRUE, b[1], e[1], r[1])_>=_CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) & (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=)) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 4.92/2.60 4.92/2.60 (2) (>=(%(e[1], 2), 1)=TRUE & <=(%(e[1], 2), 1)=TRUE ==> CONDLOOP(TRUE, b[1], e[1], r[1])_>=_NonInfC & CONDLOOP(TRUE, b[1], e[1], r[1])_>=_CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) & (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=)) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.92/2.60 4.92/2.60 (3) (max{[2], [-2]} + [-1] >= 0 & [1] + [-1]min{[2], [-2]} >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.92/2.60 4.92/2.60 (4) (max{[2], [-2]} + [-1] >= 0 & [1] + [-1]min{[2], [-2]} >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.92/2.60 4.92/2.60 (5) ([4] >= 0 & [1] >= 0 & [3] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]e[1] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 We simplified constraint (5) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint: 4.92/2.60 4.92/2.60 (6) ([1] >= 0 & [1] >= 0 & [1] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & 0 = 0 & [bni_34] = 0 & 0 = 0 & [(-1)bni_34 + (-1)Bound*bni_34] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 To summarize, we get the following constraints P__>=_ for the following pairs. 4.92/2.60 4.92/2.60 *CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], *(r[3], b[3])) 4.92/2.60 4.92/2.60 *([1] >= 0 & [1] >= 0 & [1] >= 0 ==> (U^Increasing(SQBASE(b[3], e[3], *(r[3], b[3]))), >=) & 0 = 0 & [bni_23] = 0 & 0 = 0 & [(-1)bni_23 + (-1)Bound*bni_23] >= 0 & 0 = 0 & 0 = 0 & [(-1)bso_24] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 *HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]) 4.92/2.60 4.92/2.60 *(e[5] + [-1] >= 0 & b[4] >= 0 & e[5] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & 0 = 0 & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 *(e[5] + [-1] >= 0 & b[4] >= 0 & e[5] >= 0 ==> (U^Increasing(CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5])), >=) & 0 = 0 & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]e[5] >= 0 & [1 + (-1)bso_29] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 *SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]) 4.92/2.60 4.92/2.60 *(b[2] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 *(b[2] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 *(b[3] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 *(b[3] >= 0 ==> (U^Increasing(HALFEXP(*(b[4], b[4]), e[4], r[4])), >=) & [bni_30] = 0 & 0 = 0 & [(-1)bso_31] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 *CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) 4.92/2.60 4.92/2.60 *((U^Increasing(SQBASE(b[2], e[2], r[2])), >=) & [bni_32] = 0 & [(-1)bso_33] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 *CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) 4.92/2.60 4.92/2.60 *([1] >= 0 & [1] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & 0 = 0 & [bni_34] = 0 & 0 = 0 & [(-1)bni_34 + (-1)Bound*bni_34] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 *(0 >= 0 & [1] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & 0 = 0 & [bni_34] = 0 & 0 = 0 & [(-1)bni_34 + (-1)Bound*bni_34] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 *([1] >= 0 & [1] >= 0 & [1] >= 0 ==> (U^Increasing(CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1])), >=) & 0 = 0 & [bni_34] = 0 & 0 = 0 & [(-1)bni_34 + (-1)Bound*bni_34] >= 0 & [(-1)bso_35] >= 0) 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 4.92/2.60 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 4.92/2.60 4.92/2.60 Using the following integer polynomial ordering the resulting constraints can be solved 4.92/2.60 4.92/2.60 Polynomial interpretation over integers[POLO]: 4.92/2.60 4.92/2.60 POL(TRUE) = 0 4.92/2.60 POL(FALSE) = 0 4.92/2.60 POL(CONDMOD(x_1, x_2, x_3, x_4)) = [-1] + x_3 4.92/2.60 POL(SQBASE(x_1, x_2, x_3)) = [-1] + x_2 4.92/2.60 POL(*(x_1, x_2)) = x_1*x_2 4.92/2.60 POL(HALFEXP(x_1, x_2, x_3)) = [-1] + x_2 4.92/2.60 POL(CONDLOOP(x_1, x_2, x_3, x_4)) = [-1] + x_3 4.92/2.60 POL(>(x_1, x_2)) = [-1] 4.92/2.60 POL(0) = 0 4.92/2.60 POL(2) = [2] 4.92/2.60 POL(=(x_1, x_2)) = [-1] 4.92/2.60 POL(1) = [1] 4.92/2.60 4.92/2.60 Polynomial Interpretations with Context Sensitive Arithemetic Replacement 4.92/2.60 POL(Term^CSAR-Mode @ Context) 4.92/2.60 4.92/2.60 POL(%(x_1, 2)^1 @ {}) = max{x_2, [-1]x_2} 4.92/2.60 POL(%(x_1, 2)^-1 @ {}) = min{x_2, [-1]x_2} 4.92/2.60 POL(/(x_1, 2)^1 @ {CONDLOOP_4/2}) = max{x_1, [-1]x_1} + [-1] 4.92/2.60 4.92/2.60 4.92/2.60 The following pairs are in P_>: 4.92/2.60 4.92/2.60 4.92/2.60 HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]) 4.92/2.60 4.92/2.60 4.92/2.60 The following pairs are in P_bound: 4.92/2.60 4.92/2.60 4.92/2.60 HALFEXP(b[5], e[5], r[5]) -> CONDLOOP(>(e[5], 0), b[5], /(e[5], 2), r[5]) 4.92/2.60 4.92/2.60 4.92/2.60 The following pairs are in P_>=: 4.92/2.60 4.92/2.60 4.92/2.60 CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], *(r[3], b[3])) 4.92/2.60 SQBASE(b[4], e[4], r[4]) -> HALFEXP(*(b[4], b[4]), e[4], r[4]) 4.92/2.60 CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) 4.92/2.60 CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(=(%(e[1], 2), 1), b[1], e[1], r[1]) 4.92/2.60 4.92/2.60 4.92/2.60 At least the following rules have been oriented under context sensitive arithmetic replacement: 4.92/2.60 4.92/2.60 /^1 -> 4.92/2.61 %^1 -> 4.92/2.61 4.92/2.61 ---------------------------------------- 4.92/2.61 4.92/2.61 (8) 4.92/2.61 Obligation: 4.92/2.61 IDP problem: 4.92/2.61 The following function symbols are pre-defined: 4.92/2.61 <<< 4.92/2.61 & ~ Bwand: (Integer, Integer) -> Integer 4.92/2.61 >= ~ Ge: (Integer, Integer) -> Boolean 4.92/2.61 / ~ Div: (Integer, Integer) -> Integer 4.92/2.61 | ~ Bwor: (Integer, Integer) -> Integer 4.92/2.61 != ~ Neq: (Integer, Integer) -> Boolean 4.92/2.61 && ~ Land: (Boolean, Boolean) -> Boolean 4.92/2.61 ! ~ Lnot: (Boolean) -> Boolean 4.92/2.61 = ~ Eq: (Integer, Integer) -> Boolean 4.92/2.61 <= ~ Le: (Integer, Integer) -> Boolean 4.92/2.61 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.92/2.61 % ~ Mod: (Integer, Integer) -> Integer 4.92/2.61 > ~ Gt: (Integer, Integer) -> Boolean 4.92/2.61 + ~ Add: (Integer, Integer) -> Integer 4.92/2.61 -1 ~ UnaryMinus: (Integer) -> Integer 4.92/2.61 < ~ Lt: (Integer, Integer) -> Boolean 4.92/2.61 || ~ Lor: (Boolean, Boolean) -> Boolean 4.92/2.61 - ~ Sub: (Integer, Integer) -> Integer 4.92/2.61 ~ ~ Bwnot: (Integer) -> Integer 4.92/2.61 * ~ Mul: (Integer, Integer) -> Integer 4.92/2.61 >>> 4.92/2.61 4.92/2.61 4.92/2.61 The following domains are used: 4.92/2.61 Integer 4.92/2.61 4.92/2.61 R is empty. 4.92/2.61 4.92/2.61 The integer pair graph contains the following rules and edges: 4.92/2.61 (3): CONDMOD(TRUE, b[3], e[3], r[3]) -> SQBASE(b[3], e[3], r[3] * b[3]) 4.92/2.61 (4): SQBASE(b[4], e[4], r[4]) -> HALFEXP(b[4] * b[4], e[4], r[4]) 4.92/2.61 (2): CONDMOD(FALSE, b[2], e[2], r[2]) -> SQBASE(b[2], e[2], r[2]) 4.92/2.61 (1): CONDLOOP(TRUE, b[1], e[1], r[1]) -> CONDMOD(e[1] % 2 = 1, b[1], e[1], r[1]) 4.92/2.61 4.92/2.61 (1) -> (2), if (e[1] % 2 = 1 ->^* FALSE & b[1] ->^* b[2] & e[1] ->^* e[2] & r[1] ->^* r[2]) 4.92/2.61 (1) -> (3), if (e[1] % 2 = 1 & b[1] ->^* b[3] & e[1] ->^* e[3] & r[1] ->^* r[3]) 4.92/2.61 (2) -> (4), if (b[2] ->^* b[4] & e[2] ->^* e[4] & r[2] ->^* r[4]) 4.92/2.61 (3) -> (4), if (b[3] ->^* b[4] & e[3] ->^* e[4] & r[3] * b[3] ->^* r[4]) 4.92/2.61 4.92/2.61 The set Q consists of the following terms: 4.92/2.61 pow(x0, x1) 4.92/2.61 condLoop(FALSE, x0, x1, x2) 4.92/2.61 condLoop(TRUE, x0, x1, x2) 4.92/2.61 condMod(FALSE, x0, x1, x2) 4.92/2.61 condMod(TRUE, x0, x1, x2) 4.92/2.61 sqBase(x0, x1, x2) 4.92/2.61 halfExp(x0, x1, x2) 4.92/2.61 4.92/2.61 ---------------------------------------- 4.92/2.61 4.92/2.61 (9) IDependencyGraphProof (EQUIVALENT) 4.92/2.61 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes. 4.92/2.61 ---------------------------------------- 4.92/2.61 4.92/2.61 (10) 4.92/2.61 TRUE 4.98/2.67 EOF