6.44/2.55 YES 6.44/2.57 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 6.44/2.57 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.44/2.57 6.44/2.57 6.44/2.57 Termination of the given ITRS could be proven: 6.44/2.57 6.44/2.57 (0) ITRS 6.44/2.57 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 6.44/2.57 (2) IDP 6.44/2.57 (3) UsableRulesProof [EQUIVALENT, 0 ms] 6.44/2.57 (4) IDP 6.44/2.57 (5) IDPNonInfProof [SOUND, 599 ms] 6.44/2.57 (6) IDP 6.44/2.57 (7) IDPNonInfProof [SOUND, 42 ms] 6.44/2.57 (8) IDP 6.44/2.57 (9) PisEmptyProof [EQUIVALENT, 0 ms] 6.44/2.57 (10) YES 6.44/2.57 6.44/2.57 6.44/2.57 ---------------------------------------- 6.44/2.57 6.44/2.57 (0) 6.44/2.57 Obligation: 6.44/2.57 ITRS problem: 6.44/2.57 6.44/2.57 The following function symbols are pre-defined: 6.44/2.57 <<< 6.44/2.57 & ~ Bwand: (Integer, Integer) -> Integer 6.44/2.57 >= ~ Ge: (Integer, Integer) -> Boolean 6.44/2.57 | ~ Bwor: (Integer, Integer) -> Integer 6.44/2.57 / ~ Div: (Integer, Integer) -> Integer 6.44/2.57 != ~ Neq: (Integer, Integer) -> Boolean 6.44/2.57 && ~ Land: (Boolean, Boolean) -> Boolean 6.44/2.57 ! ~ Lnot: (Boolean) -> Boolean 6.44/2.57 = ~ Eq: (Integer, Integer) -> Boolean 6.44/2.57 <= ~ Le: (Integer, Integer) -> Boolean 6.44/2.57 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.44/2.57 % ~ Mod: (Integer, Integer) -> Integer 6.44/2.57 > ~ Gt: (Integer, Integer) -> Boolean 6.44/2.57 + ~ Add: (Integer, Integer) -> Integer 6.44/2.57 -1 ~ UnaryMinus: (Integer) -> Integer 6.44/2.57 < ~ Lt: (Integer, Integer) -> Boolean 6.44/2.57 || ~ Lor: (Boolean, Boolean) -> Boolean 6.44/2.57 - ~ Sub: (Integer, Integer) -> Integer 6.44/2.57 ~ ~ Bwnot: (Integer) -> Integer 6.44/2.57 * ~ Mul: (Integer, Integer) -> Integer 6.44/2.57 >>> 6.44/2.57 6.44/2.57 The TRS R consists of the following rules: 6.44/2.57 f(TRUE, x, y, z) -> f(x > y && x > z, x, y + 1, z) 6.44/2.57 f(TRUE, x, y, z) -> f(x > y && x > z, x, y, z + 1) 6.44/2.57 The set Q consists of the following terms: 6.44/2.57 f(TRUE, x0, x1, x2) 6.44/2.57 6.44/2.57 ---------------------------------------- 6.44/2.57 6.44/2.57 (1) ITRStoIDPProof (EQUIVALENT) 6.44/2.57 Added dependency pairs 6.44/2.57 ---------------------------------------- 6.44/2.57 6.44/2.57 (2) 6.44/2.57 Obligation: 6.44/2.57 IDP problem: 6.44/2.57 The following function symbols are pre-defined: 6.44/2.57 <<< 6.44/2.57 & ~ Bwand: (Integer, Integer) -> Integer 6.44/2.57 >= ~ Ge: (Integer, Integer) -> Boolean 6.44/2.57 | ~ Bwor: (Integer, Integer) -> Integer 6.44/2.57 / ~ Div: (Integer, Integer) -> Integer 6.44/2.57 != ~ Neq: (Integer, Integer) -> Boolean 6.44/2.57 && ~ Land: (Boolean, Boolean) -> Boolean 6.44/2.57 ! ~ Lnot: (Boolean) -> Boolean 6.44/2.57 = ~ Eq: (Integer, Integer) -> Boolean 6.44/2.57 <= ~ Le: (Integer, Integer) -> Boolean 6.44/2.57 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.44/2.57 % ~ Mod: (Integer, Integer) -> Integer 6.44/2.57 > ~ Gt: (Integer, Integer) -> Boolean 6.44/2.57 + ~ Add: (Integer, Integer) -> Integer 6.44/2.57 -1 ~ UnaryMinus: (Integer) -> Integer 6.44/2.57 < ~ Lt: (Integer, Integer) -> Boolean 6.44/2.57 || ~ Lor: (Boolean, Boolean) -> Boolean 6.44/2.57 - ~ Sub: (Integer, Integer) -> Integer 6.44/2.57 ~ ~ Bwnot: (Integer) -> Integer 6.44/2.57 * ~ Mul: (Integer, Integer) -> Integer 6.44/2.57 >>> 6.44/2.57 6.44/2.57 6.44/2.57 The following domains are used: 6.44/2.57 Boolean, Integer 6.44/2.57 6.44/2.57 The ITRS R consists of the following rules: 6.44/2.57 f(TRUE, x, y, z) -> f(x > y && x > z, x, y + 1, z) 6.44/2.57 f(TRUE, x, y, z) -> f(x > y && x > z, x, y, z + 1) 6.44/2.57 6.44/2.57 The integer pair graph contains the following rules and edges: 6.44/2.57 (0): F(TRUE, x[0], y[0], z[0]) -> F(x[0] > y[0] && x[0] > z[0], x[0], y[0] + 1, z[0]) 6.44/2.57 (1): F(TRUE, x[1], y[1], z[1]) -> F(x[1] > y[1] && x[1] > z[1], x[1], y[1], z[1] + 1) 6.44/2.57 6.44/2.57 (0) -> (0), if (x[0] > y[0] && x[0] > z[0] & x[0] ->^* x[0]' & y[0] + 1 ->^* y[0]' & z[0] ->^* z[0]') 6.44/2.57 (0) -> (1), if (x[0] > y[0] && x[0] > z[0] & x[0] ->^* x[1] & y[0] + 1 ->^* y[1] & z[0] ->^* z[1]) 6.44/2.57 (1) -> (0), if (x[1] > y[1] && x[1] > z[1] & x[1] ->^* x[0] & y[1] ->^* y[0] & z[1] + 1 ->^* z[0]) 6.44/2.57 (1) -> (1), if (x[1] > y[1] && x[1] > z[1] & x[1] ->^* x[1]' & y[1] ->^* y[1]' & z[1] + 1 ->^* z[1]') 6.44/2.57 6.44/2.57 The set Q consists of the following terms: 6.44/2.57 f(TRUE, x0, x1, x2) 6.44/2.57 6.44/2.57 ---------------------------------------- 6.44/2.57 6.44/2.57 (3) UsableRulesProof (EQUIVALENT) 6.44/2.57 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 6.44/2.57 ---------------------------------------- 6.44/2.57 6.44/2.57 (4) 6.44/2.57 Obligation: 6.44/2.57 IDP problem: 6.44/2.57 The following function symbols are pre-defined: 6.44/2.57 <<< 6.44/2.57 & ~ Bwand: (Integer, Integer) -> Integer 6.44/2.57 >= ~ Ge: (Integer, Integer) -> Boolean 6.44/2.57 | ~ Bwor: (Integer, Integer) -> Integer 6.44/2.57 / ~ Div: (Integer, Integer) -> Integer 6.44/2.57 != ~ Neq: (Integer, Integer) -> Boolean 6.44/2.57 && ~ Land: (Boolean, Boolean) -> Boolean 6.44/2.57 ! ~ Lnot: (Boolean) -> Boolean 6.44/2.57 = ~ Eq: (Integer, Integer) -> Boolean 6.44/2.57 <= ~ Le: (Integer, Integer) -> Boolean 6.44/2.57 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.44/2.57 % ~ Mod: (Integer, Integer) -> Integer 6.44/2.57 > ~ Gt: (Integer, Integer) -> Boolean 6.44/2.57 + ~ Add: (Integer, Integer) -> Integer 6.44/2.57 -1 ~ UnaryMinus: (Integer) -> Integer 6.44/2.57 < ~ Lt: (Integer, Integer) -> Boolean 6.44/2.57 || ~ Lor: (Boolean, Boolean) -> Boolean 6.44/2.57 - ~ Sub: (Integer, Integer) -> Integer 6.44/2.57 ~ ~ Bwnot: (Integer) -> Integer 6.44/2.57 * ~ Mul: (Integer, Integer) -> Integer 6.44/2.57 >>> 6.44/2.57 6.44/2.57 6.44/2.57 The following domains are used: 6.44/2.57 Boolean, Integer 6.44/2.57 6.44/2.57 R is empty. 6.44/2.57 6.44/2.57 The integer pair graph contains the following rules and edges: 6.44/2.57 (0): F(TRUE, x[0], y[0], z[0]) -> F(x[0] > y[0] && x[0] > z[0], x[0], y[0] + 1, z[0]) 6.44/2.57 (1): F(TRUE, x[1], y[1], z[1]) -> F(x[1] > y[1] && x[1] > z[1], x[1], y[1], z[1] + 1) 6.44/2.57 6.44/2.57 (0) -> (0), if (x[0] > y[0] && x[0] > z[0] & x[0] ->^* x[0]' & y[0] + 1 ->^* y[0]' & z[0] ->^* z[0]') 6.44/2.57 (0) -> (1), if (x[0] > y[0] && x[0] > z[0] & x[0] ->^* x[1] & y[0] + 1 ->^* y[1] & z[0] ->^* z[1]) 6.44/2.57 (1) -> (0), if (x[1] > y[1] && x[1] > z[1] & x[1] ->^* x[0] & y[1] ->^* y[0] & z[1] + 1 ->^* z[0]) 6.44/2.57 (1) -> (1), if (x[1] > y[1] && x[1] > z[1] & x[1] ->^* x[1]' & y[1] ->^* y[1]' & z[1] + 1 ->^* z[1]') 6.44/2.57 6.44/2.57 The set Q consists of the following terms: 6.44/2.57 f(TRUE, x0, x1, x2) 6.44/2.57 6.44/2.57 ---------------------------------------- 6.44/2.57 6.44/2.57 (5) IDPNonInfProof (SOUND) 6.44/2.57 Used the following options for this NonInfProof: 6.44/2.57 6.44/2.57 IDPGPoloSolver: 6.44/2.57 Range: [(-1,2)] 6.44/2.57 IsNat: false 6.44/2.57 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@5f64a601 6.44/2.57 Constraint Generator: NonInfConstraintGenerator: 6.44/2.57 PathGenerator: MetricPathGenerator: 6.44/2.57 Max Left Steps: 1 6.44/2.57 Max Right Steps: 1 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 The constraints were generated the following way: 6.44/2.57 6.44/2.57 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 6.44/2.57 6.44/2.57 Note that final constraints are written in bold face. 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 For Pair F(TRUE, x, y, z) -> F(&&(>(x, y), >(x, z)), x, +(y, 1), z) the following chains were created: 6.44/2.57 *We consider the chain F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[0], y[0]), >(x[0], z[0]))=TRUE & x[0]=x[0]1 & +(y[0], 1)=y[0]1 & z[0]=z[0]1 & &&(>(x[0]1, y[0]1), >(x[0]1, z[0]1))=TRUE & x[0]1=x[0]2 & +(y[0]1, 1)=y[0]2 & z[0]1=z[0]2 ==> F(TRUE, x[0]1, y[0]1, z[0]1)_>=_NonInfC & F(TRUE, x[0]1, y[0]1, z[0]1)_>=_F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[0], y[0])=TRUE & >(x[0], z[0])=TRUE & >(x[0], +(y[0], 1))=TRUE ==> F(TRUE, x[0], +(y[0], 1), z[0])_>=_NonInfC & F(TRUE, x[0], +(y[0], 1), z[0])_>=_F(&&(>(x[0], +(y[0], 1)), >(x[0], z[0])), x[0], +(+(y[0], 1), 1), z[0]) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[0] >= 0 & y[0] + x[0] + [-1]z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [(-1)bni_10]z[0] + [bni_10]y[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (7) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.57 6.44/2.57 (8) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 (9) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 *We consider the chain F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[1], y[1]), >(x[1], z[1]))=TRUE & x[1]=x[0] & y[1]=y[0] & +(z[1], 1)=z[0] & &&(>(x[0], y[0]), >(x[0], z[0]))=TRUE & x[0]=x[0]1 & +(y[0], 1)=y[0]1 & z[0]=z[0]1 ==> F(TRUE, x[0], y[0], z[0])_>=_NonInfC & F(TRUE, x[0], y[0], z[0])_>=_F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) & (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[1], y[1])=TRUE & >(x[1], z[1])=TRUE & >(x[1], +(z[1], 1))=TRUE ==> F(TRUE, x[1], y[1], +(z[1], 1))_>=_NonInfC & F(TRUE, x[1], y[1], +(z[1], 1))_>=_F(&&(>(x[1], y[1]), >(x[1], +(z[1], 1))), x[1], +(y[1], 1), +(z[1], 1)) & (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[1] >= 0 & y[1] + x[1] + [-1]z[1] >= 0 & [-1] + y[1] + x[1] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]y[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (7) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.57 6.44/2.57 (8) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 (9) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 *We consider the chain F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[0], y[0]), >(x[0], z[0]))=TRUE & x[0]=x[0]1 & +(y[0], 1)=y[0]1 & z[0]=z[0]1 & &&(>(x[0]1, y[0]1), >(x[0]1, z[0]1))=TRUE & x[0]1=x[1] & +(y[0]1, 1)=y[1] & z[0]1=z[1] ==> F(TRUE, x[0]1, y[0]1, z[0]1)_>=_NonInfC & F(TRUE, x[0]1, y[0]1, z[0]1)_>=_F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[0], y[0])=TRUE & >(x[0], z[0])=TRUE & >(x[0], +(y[0], 1))=TRUE ==> F(TRUE, x[0], +(y[0], 1), z[0])_>=_NonInfC & F(TRUE, x[0], +(y[0], 1), z[0])_>=_F(&&(>(x[0], +(y[0], 1)), >(x[0], z[0])), x[0], +(+(y[0], 1), 1), z[0]) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[0] >= 0 & y[0] + x[0] + [-1]z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [(-1)bni_10]z[0] + [bni_10]y[0] + [bni_10]x[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (7) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.57 6.44/2.57 (8) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 (9) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 *We consider the chain F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[1], y[1]), >(x[1], z[1]))=TRUE & x[1]=x[0] & y[1]=y[0] & +(z[1], 1)=z[0] & &&(>(x[0], y[0]), >(x[0], z[0]))=TRUE & x[0]=x[1]1 & +(y[0], 1)=y[1]1 & z[0]=z[1]1 ==> F(TRUE, x[0], y[0], z[0])_>=_NonInfC & F(TRUE, x[0], y[0], z[0])_>=_F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) & (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[1], y[1])=TRUE & >(x[1], z[1])=TRUE & >(x[1], +(z[1], 1))=TRUE ==> F(TRUE, x[1], y[1], +(z[1], 1))_>=_NonInfC & F(TRUE, x[1], y[1], +(z[1], 1))_>=_F(&&(>(x[1], y[1]), >(x[1], +(z[1], 1))), x[1], +(y[1], 1), +(z[1], 1)) & (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[1] >= 0 & y[1] + x[1] + [-1]z[1] >= 0 & [-1] + y[1] + x[1] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [(-1)bni_10]z[1] + [bni_10]y[1] + [bni_10]x[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (7) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.57 6.44/2.57 (8) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 (9) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 For Pair F(TRUE, x, y, z) -> F(&&(>(x, y), >(x, z)), x, y, +(z, 1)) the following chains were created: 6.44/2.57 *We consider the chain F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[0], y[0]), >(x[0], z[0]))=TRUE & x[0]=x[1] & +(y[0], 1)=y[1] & z[0]=z[1] & &&(>(x[1], y[1]), >(x[1], z[1]))=TRUE & x[1]=x[0]1 & y[1]=y[0]1 & +(z[1], 1)=z[0]1 ==> F(TRUE, x[1], y[1], z[1])_>=_NonInfC & F(TRUE, x[1], y[1], z[1])_>=_F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) & (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[0], y[0])=TRUE & >(x[0], z[0])=TRUE & >(x[0], +(y[0], 1))=TRUE ==> F(TRUE, x[0], +(y[0], 1), z[0])_>=_NonInfC & F(TRUE, x[0], +(y[0], 1), z[0])_>=_F(&&(>(x[0], +(y[0], 1)), >(x[0], z[0])), x[0], +(y[0], 1), +(z[0], 1)) & (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[0] >= 0 & y[0] + x[0] + [-1]z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [(-1)bni_12]z[0] + [bni_12]y[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (7) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.57 6.44/2.57 (8) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 (9) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 *We consider the chain F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[1], y[1]), >(x[1], z[1]))=TRUE & x[1]=x[1]1 & y[1]=y[1]1 & +(z[1], 1)=z[1]1 & &&(>(x[1]1, y[1]1), >(x[1]1, z[1]1))=TRUE & x[1]1=x[0] & y[1]1=y[0] & +(z[1]1, 1)=z[0] ==> F(TRUE, x[1]1, y[1]1, z[1]1)_>=_NonInfC & F(TRUE, x[1]1, y[1]1, z[1]1)_>=_F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1)) & (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[1], y[1])=TRUE & >(x[1], z[1])=TRUE & >(x[1], +(z[1], 1))=TRUE ==> F(TRUE, x[1], y[1], +(z[1], 1))_>=_NonInfC & F(TRUE, x[1], y[1], +(z[1], 1))_>=_F(&&(>(x[1], y[1]), >(x[1], +(z[1], 1))), x[1], y[1], +(+(z[1], 1), 1)) & (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[1] >= 0 & y[1] + x[1] + [-1]z[1] >= 0 & [-1] + y[1] + x[1] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]y[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (7) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.57 6.44/2.57 (8) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 (9) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 *We consider the chain F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[0], y[0]), >(x[0], z[0]))=TRUE & x[0]=x[1] & +(y[0], 1)=y[1] & z[0]=z[1] & &&(>(x[1], y[1]), >(x[1], z[1]))=TRUE & x[1]=x[1]1 & y[1]=y[1]1 & +(z[1], 1)=z[1]1 ==> F(TRUE, x[1], y[1], z[1])_>=_NonInfC & F(TRUE, x[1], y[1], z[1])_>=_F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) & (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[0], y[0])=TRUE & >(x[0], z[0])=TRUE & >(x[0], +(y[0], 1))=TRUE ==> F(TRUE, x[0], +(y[0], 1), z[0])_>=_NonInfC & F(TRUE, x[0], +(y[0], 1), z[0])_>=_F(&&(>(x[0], +(y[0], 1)), >(x[0], z[0])), x[0], +(y[0], 1), +(z[0], 1)) & (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[0] >= 0 & y[0] + x[0] + [-1]z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [(-1)bni_12]z[0] + [bni_12]y[0] + [bni_12]x[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (7) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.57 6.44/2.57 (8) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 (9) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 *We consider the chain F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)), F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) which results in the following constraint: 6.44/2.57 6.44/2.57 (1) (&&(>(x[1], y[1]), >(x[1], z[1]))=TRUE & x[1]=x[1]1 & y[1]=y[1]1 & +(z[1], 1)=z[1]1 & &&(>(x[1]1, y[1]1), >(x[1]1, z[1]1))=TRUE & x[1]1=x[1]2 & y[1]1=y[1]2 & +(z[1]1, 1)=z[1]2 ==> F(TRUE, x[1]1, y[1]1, z[1]1)_>=_NonInfC & F(TRUE, x[1]1, y[1]1, z[1]1)_>=_F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1)) & (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.57 6.44/2.57 (2) (>(x[1], y[1])=TRUE & >(x[1], z[1])=TRUE & >(x[1], +(z[1], 1))=TRUE ==> F(TRUE, x[1], y[1], +(z[1], 1))_>=_NonInfC & F(TRUE, x[1], y[1], +(z[1], 1))_>=_F(&&(>(x[1], y[1]), >(x[1], +(z[1], 1))), x[1], y[1], +(+(z[1], 1), 1)) & (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=)) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.57 6.44/2.57 (3) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.57 6.44/2.57 (4) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.57 6.44/2.57 (5) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]z[1] >= 0 & x[1] + [-2] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.57 6.44/2.57 6.44/2.57 6.44/2.57 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.57 6.44/2.57 (6) (x[1] >= 0 & y[1] + x[1] + [-1]z[1] >= 0 & [-1] + y[1] + x[1] + [-1]z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [(-1)bni_12]z[1] + [bni_12]y[1] + [bni_12]x[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.58 6.44/2.58 (7) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.58 6.44/2.58 (8) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 (9) (x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 To summarize, we get the following constraints P__>=_ for the following pairs. 6.44/2.58 6.44/2.58 *F(TRUE, x, y, z) -> F(&&(>(x, y), >(x, z)), x, +(y, 1), z) 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(-1)Bound*bni_10 + bni_10] + [bni_10]z[0] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0])), >=) & [(-1)Bound*bni_10] + [bni_10]z[1] >= 0 & [(-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 *F(TRUE, x, y, z) -> F(&&(>(x, y), >(x, z)), x, y, +(z, 1)) 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1))), >=) & [(-1)Bound*bni_12 + bni_12] + [bni_12]z[0] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[1] >= 0 & z[1] >= 0 & [-1] + z[1] >= 0 & y[1] >= 0 ==> (U^Increasing(F(&&(>(x[1]1, y[1]1), >(x[1]1, z[1]1)), x[1]1, y[1]1, +(z[1]1, 1))), >=) & [(-1)Bound*bni_12] + [bni_12]z[1] >= 0 & [1 + (-1)bso_13] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 6.44/2.58 6.44/2.58 Using the following integer polynomial ordering the resulting constraints can be solved 6.44/2.58 6.44/2.58 Polynomial interpretation over integers[POLO]: 6.44/2.58 6.44/2.58 POL(TRUE) = 0 6.44/2.58 POL(FALSE) = [1] 6.44/2.58 POL(F(x_1, x_2, x_3, x_4)) = [-1]x_4 + x_2 + [-1]x_1 6.44/2.58 POL(&&(x_1, x_2)) = 0 6.44/2.58 POL(>(x_1, x_2)) = [-1] 6.44/2.58 POL(+(x_1, x_2)) = x_1 + x_2 6.44/2.58 POL(1) = [1] 6.44/2.58 6.44/2.58 6.44/2.58 The following pairs are in P_>: 6.44/2.58 6.44/2.58 6.44/2.58 F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) 6.44/2.58 6.44/2.58 6.44/2.58 The following pairs are in P_bound: 6.44/2.58 6.44/2.58 6.44/2.58 F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) 6.44/2.58 F(TRUE, x[1], y[1], z[1]) -> F(&&(>(x[1], y[1]), >(x[1], z[1])), x[1], y[1], +(z[1], 1)) 6.44/2.58 6.44/2.58 6.44/2.58 The following pairs are in P_>=: 6.44/2.58 6.44/2.58 6.44/2.58 F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) 6.44/2.58 6.44/2.58 6.44/2.58 At least the following rules have been oriented under context sensitive arithmetic replacement: 6.44/2.58 6.44/2.58 &&(TRUE, TRUE)^1 <-> TRUE^1 6.44/2.58 FALSE^1 -> &&(TRUE, FALSE)^1 6.44/2.58 FALSE^1 -> &&(FALSE, TRUE)^1 6.44/2.58 FALSE^1 -> &&(FALSE, FALSE)^1 6.44/2.58 6.44/2.58 ---------------------------------------- 6.44/2.58 6.44/2.58 (6) 6.44/2.58 Obligation: 6.44/2.58 IDP problem: 6.44/2.58 The following function symbols are pre-defined: 6.44/2.58 <<< 6.44/2.58 & ~ Bwand: (Integer, Integer) -> Integer 6.44/2.58 >= ~ Ge: (Integer, Integer) -> Boolean 6.44/2.58 | ~ Bwor: (Integer, Integer) -> Integer 6.44/2.58 / ~ Div: (Integer, Integer) -> Integer 6.44/2.58 != ~ Neq: (Integer, Integer) -> Boolean 6.44/2.58 && ~ Land: (Boolean, Boolean) -> Boolean 6.44/2.58 ! ~ Lnot: (Boolean) -> Boolean 6.44/2.58 = ~ Eq: (Integer, Integer) -> Boolean 6.44/2.58 <= ~ Le: (Integer, Integer) -> Boolean 6.44/2.58 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.44/2.58 % ~ Mod: (Integer, Integer) -> Integer 6.44/2.58 > ~ Gt: (Integer, Integer) -> Boolean 6.44/2.58 + ~ Add: (Integer, Integer) -> Integer 6.44/2.58 -1 ~ UnaryMinus: (Integer) -> Integer 6.44/2.58 < ~ Lt: (Integer, Integer) -> Boolean 6.44/2.58 || ~ Lor: (Boolean, Boolean) -> Boolean 6.44/2.58 - ~ Sub: (Integer, Integer) -> Integer 6.44/2.58 ~ ~ Bwnot: (Integer) -> Integer 6.44/2.58 * ~ Mul: (Integer, Integer) -> Integer 6.44/2.58 >>> 6.44/2.58 6.44/2.58 6.44/2.58 The following domains are used: 6.44/2.58 Boolean, Integer 6.44/2.58 6.44/2.58 R is empty. 6.44/2.58 6.44/2.58 The integer pair graph contains the following rules and edges: 6.44/2.58 (0): F(TRUE, x[0], y[0], z[0]) -> F(x[0] > y[0] && x[0] > z[0], x[0], y[0] + 1, z[0]) 6.44/2.58 6.44/2.58 (0) -> (0), if (x[0] > y[0] && x[0] > z[0] & x[0] ->^* x[0]' & y[0] + 1 ->^* y[0]' & z[0] ->^* z[0]') 6.44/2.58 6.44/2.58 The set Q consists of the following terms: 6.44/2.58 f(TRUE, x0, x1, x2) 6.44/2.58 6.44/2.58 ---------------------------------------- 6.44/2.58 6.44/2.58 (7) IDPNonInfProof (SOUND) 6.44/2.58 Used the following options for this NonInfProof: 6.44/2.58 6.44/2.58 IDPGPoloSolver: 6.44/2.58 Range: [(-1,2)] 6.44/2.58 IsNat: false 6.44/2.58 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@5f64a601 6.44/2.58 Constraint Generator: NonInfConstraintGenerator: 6.44/2.58 PathGenerator: MetricPathGenerator: 6.44/2.58 Max Left Steps: 1 6.44/2.58 Max Right Steps: 1 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 The constraints were generated the following way: 6.44/2.58 6.44/2.58 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 6.44/2.58 6.44/2.58 Note that final constraints are written in bold face. 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 For Pair F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) the following chains were created: 6.44/2.58 *We consider the chain F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]), F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) which results in the following constraint: 6.44/2.58 6.44/2.58 (1) (&&(>(x[0], y[0]), >(x[0], z[0]))=TRUE & x[0]=x[0]1 & +(y[0], 1)=y[0]1 & z[0]=z[0]1 & &&(>(x[0]1, y[0]1), >(x[0]1, z[0]1))=TRUE & x[0]1=x[0]2 & +(y[0]1, 1)=y[0]2 & z[0]1=z[0]2 ==> F(TRUE, x[0]1, y[0]1, z[0]1)_>=_NonInfC & F(TRUE, x[0]1, y[0]1, z[0]1)_>=_F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=)) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.44/2.58 6.44/2.58 (2) (>(x[0], y[0])=TRUE & >(x[0], z[0])=TRUE & >(x[0], +(y[0], 1))=TRUE ==> F(TRUE, x[0], +(y[0], 1), z[0])_>=_NonInfC & F(TRUE, x[0], +(y[0], 1), z[0])_>=_F(&&(>(x[0], +(y[0], 1)), >(x[0], z[0])), x[0], +(+(y[0], 1), 1), z[0]) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=)) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.44/2.58 6.44/2.58 (3) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]y[0] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.44/2.58 6.44/2.58 (4) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]y[0] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.44/2.58 6.44/2.58 (5) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] + [-1]z[0] >= 0 & x[0] + [-2] + [-1]y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]y[0] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.58 6.44/2.58 (6) (x[0] >= 0 & y[0] + x[0] + [-1]z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.44/2.58 6.44/2.58 (7) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.44/2.58 6.44/2.58 (8) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 (9) (x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 To summarize, we get the following constraints P__>=_ for the following pairs. 6.44/2.58 6.44/2.58 *F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 *(x[0] >= 0 & z[0] >= 0 & [-1] + x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >(x[0]1, z[0]1)), x[0]1, +(y[0]1, 1), z[0]1)), >=) & [(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x[0] >= 0 & [1 + (-1)bso_11] >= 0) 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 6.44/2.58 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 6.44/2.58 6.44/2.58 Using the following integer polynomial ordering the resulting constraints can be solved 6.44/2.58 6.44/2.58 Polynomial interpretation over integers[POLO]: 6.44/2.58 6.44/2.58 POL(TRUE) = 0 6.44/2.58 POL(FALSE) = [3] 6.44/2.58 POL(F(x_1, x_2, x_3, x_4)) = [2] + [-1]x_3 + x_2 + [-1]x_1 6.44/2.58 POL(&&(x_1, x_2)) = 0 6.44/2.58 POL(>(x_1, x_2)) = [-1] 6.44/2.58 POL(+(x_1, x_2)) = x_1 + x_2 6.44/2.58 POL(1) = [1] 6.44/2.58 6.44/2.58 6.44/2.58 The following pairs are in P_>: 6.44/2.58 6.44/2.58 6.44/2.58 F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) 6.44/2.58 6.44/2.58 6.44/2.58 The following pairs are in P_bound: 6.44/2.58 6.44/2.58 6.44/2.58 F(TRUE, x[0], y[0], z[0]) -> F(&&(>(x[0], y[0]), >(x[0], z[0])), x[0], +(y[0], 1), z[0]) 6.44/2.58 6.44/2.58 6.44/2.58 The following pairs are in P_>=: 6.44/2.58 6.44/2.58 none 6.44/2.58 6.44/2.58 6.44/2.58 At least the following rules have been oriented under context sensitive arithmetic replacement: 6.44/2.58 6.44/2.58 &&(TRUE, TRUE)^1 <-> TRUE^1 6.44/2.58 FALSE^1 -> &&(TRUE, FALSE)^1 6.44/2.58 FALSE^1 -> &&(FALSE, TRUE)^1 6.44/2.58 FALSE^1 -> &&(FALSE, FALSE)^1 6.44/2.58 6.44/2.58 ---------------------------------------- 6.44/2.58 6.44/2.58 (8) 6.44/2.58 Obligation: 6.44/2.58 IDP problem: 6.44/2.58 The following function symbols are pre-defined: 6.44/2.58 <<< 6.44/2.58 & ~ Bwand: (Integer, Integer) -> Integer 6.44/2.58 >= ~ Ge: (Integer, Integer) -> Boolean 6.44/2.58 | ~ Bwor: (Integer, Integer) -> Integer 6.44/2.58 / ~ Div: (Integer, Integer) -> Integer 6.44/2.58 != ~ Neq: (Integer, Integer) -> Boolean 6.44/2.58 && ~ Land: (Boolean, Boolean) -> Boolean 6.44/2.58 ! ~ Lnot: (Boolean) -> Boolean 6.44/2.58 = ~ Eq: (Integer, Integer) -> Boolean 6.44/2.58 <= ~ Le: (Integer, Integer) -> Boolean 6.44/2.58 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.44/2.58 % ~ Mod: (Integer, Integer) -> Integer 6.44/2.58 > ~ Gt: (Integer, Integer) -> Boolean 6.44/2.58 + ~ Add: (Integer, Integer) -> Integer 6.44/2.58 -1 ~ UnaryMinus: (Integer) -> Integer 6.44/2.58 < ~ Lt: (Integer, Integer) -> Boolean 6.44/2.58 || ~ Lor: (Boolean, Boolean) -> Boolean 6.44/2.58 - ~ Sub: (Integer, Integer) -> Integer 6.44/2.58 ~ ~ Bwnot: (Integer) -> Integer 6.44/2.58 * ~ Mul: (Integer, Integer) -> Integer 6.44/2.58 >>> 6.44/2.58 6.44/2.58 6.44/2.58 The following domains are used: 6.44/2.58 none 6.44/2.58 6.44/2.58 R is empty. 6.44/2.58 6.44/2.58 The integer pair graph is empty. 6.44/2.58 6.44/2.58 The set Q consists of the following terms: 6.44/2.58 f(TRUE, x0, x1, x2) 6.44/2.58 6.44/2.58 ---------------------------------------- 6.44/2.58 6.44/2.58 (9) PisEmptyProof (EQUIVALENT) 6.44/2.58 The TRS P is empty. Hence, there is no (P,Q,R) chain. 6.44/2.58 ---------------------------------------- 6.44/2.58 6.44/2.58 (10) 6.44/2.58 YES 6.64/2.64 EOF