2.61/2.61 YES 2.61/2.61 2.61/2.61 DP problem for innermost termination. 2.61/2.61 P = 2.61/2.61 f#(true, x, y, z) -> f#(x > y && x > z, x, y, z + 1) 2.61/2.61 f#(true, I0, I1, I2) -> f#(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.61 R = 2.61/2.61 f(true, x, y, z) -> f(x > y && x > z, x, y, z + 1) 2.61/2.61 f(true, I0, I1, I2) -> f(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.61 2.61/2.61 This problem is converted using chaining, where edges between chained DPs are removed. 2.61/2.61 2.61/2.61 DP problem for innermost termination. 2.61/2.61 P = 2.61/2.61 f#(true, x, y, z) -> f_2#(x, y, z) 2.61/2.61 f#(true, I0, I1, I2) -> f_1#(I0, I1, I2) 2.61/2.61 f_1#(I0, I1, I2) -> f#(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.61 f_2#(x, y, z) -> f#(x > y && x > z, x, y, z + 1) 2.61/2.61 f_2#(x, y, z) -> f_1#(x, y, z + 1) [x > y && x > z] 2.61/2.61 f_2#(x, y, z) -> f_2#(x, y, z + 1) [x > y && x > z] 2.61/2.61 f_1#(I0, I1, I2) -> f_1#(I0, I1 + 1, I2) [I0 > I1 && I0 > I2] 2.61/2.61 f_1#(I0, I1, I2) -> f_2#(I0, I1 + 1, I2) [I0 > I1 && I0 > I2] 2.61/2.61 R = 2.61/2.61 f(true, x, y, z) -> f(x > y && x > z, x, y, z + 1) 2.61/2.61 f(true, I0, I1, I2) -> f(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.61 2.61/2.61 The dependency graph for this problem is: 2.61/2.61 0 -> 5, 4, 3 2.61/2.61 1 -> 7, 6, 2 2.61/2.61 2 -> 2.61/2.61 3 -> 2.61/2.61 4 -> 7, 6, 2 2.61/2.61 5 -> 5, 3, 4 2.61/2.61 6 -> 7, 6, 2 2.61/2.61 7 -> 3, 4, 5 2.61/2.61 Where: 2.61/2.61 0) f#(true, x, y, z) -> f_2#(x, y, z) 2.61/2.61 1) f#(true, I0, I1, I2) -> f_1#(I0, I1, I2) 2.61/2.61 2) f_1#(I0, I1, I2) -> f#(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.61 3) f_2#(x, y, z) -> f#(x > y && x > z, x, y, z + 1) 2.61/2.61 4) f_2#(x, y, z) -> f_1#(x, y, z + 1) [x > y && x > z] 2.61/2.61 5) f_2#(x, y, z) -> f_2#(x, y, z + 1) [x > y && x > z] 2.61/2.61 6) f_1#(I0, I1, I2) -> f_1#(I0, I1 + 1, I2) [I0 > I1 && I0 > I2] 2.61/2.61 7) f_1#(I0, I1, I2) -> f_2#(I0, I1 + 1, I2) [I0 > I1 && I0 > I2] 2.61/2.61 2.61/2.61 We have the following SCCs. 2.61/2.61 { 4, 5, 6, 7 } 2.61/2.61 2.61/2.61 DP problem for innermost termination. 2.61/2.61 P = 2.61/2.61 f_2#(x, y, z) -> f_1#(x, y, z + 1) [x > y && x > z] 2.61/2.61 f_2#(x, y, z) -> f_2#(x, y, z + 1) [x > y && x > z] 2.61/2.61 f_1#(I0, I1, I2) -> f_1#(I0, I1 + 1, I2) [I0 > I1 && I0 > I2] 2.61/2.61 f_1#(I0, I1, I2) -> f_2#(I0, I1 + 1, I2) [I0 > I1 && I0 > I2] 2.61/2.61 R = 2.61/2.61 f(true, x, y, z) -> f(x > y && x > z, x, y, z + 1) 2.61/2.61 f(true, I0, I1, I2) -> f(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.61 2.61/2.61 We use the reverse value criterion with the projection function NU: 2.61/2.62 NU[f_1#(z1,z2,z3)] = z1 + -1 * z2 2.61/2.62 NU[f_2#(z1,z2,z3)] = z1 + -1 * z2 2.61/2.62 2.61/2.62 This gives the following inequalities: 2.61/2.62 x > y && x > z ==> x + -1 * y >= x + -1 * y 2.61/2.62 x > y && x > z ==> x + -1 * y >= x + -1 * y 2.61/2.62 I0 > I1 && I0 > I2 ==> I0 + -1 * I1 > I0 + -1 * (I1 + 1) with I0 + -1 * I1 >= 0 2.61/2.62 I0 > I1 && I0 > I2 ==> I0 + -1 * I1 > I0 + -1 * (I1 + 1) with I0 + -1 * I1 >= 0 2.61/2.62 2.61/2.62 We remove all the strictly oriented dependency pairs. 2.61/2.62 2.61/2.62 DP problem for innermost termination. 2.61/2.62 P = 2.61/2.62 f_2#(x, y, z) -> f_1#(x, y, z + 1) [x > y && x > z] 2.61/2.62 f_2#(x, y, z) -> f_2#(x, y, z + 1) [x > y && x > z] 2.61/2.62 R = 2.61/2.62 f(true, x, y, z) -> f(x > y && x > z, x, y, z + 1) 2.61/2.62 f(true, I0, I1, I2) -> f(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.62 2.61/2.62 The dependency graph for this problem is: 2.61/2.62 4 -> 2.61/2.62 5 -> 5, 4 2.61/2.62 Where: 2.61/2.62 4) f_2#(x, y, z) -> f_1#(x, y, z + 1) [x > y && x > z] 2.61/2.62 5) f_2#(x, y, z) -> f_2#(x, y, z + 1) [x > y && x > z] 2.61/2.62 2.61/2.62 We have the following SCCs. 2.61/2.62 { 5 } 2.61/2.62 2.61/2.62 DP problem for innermost termination. 2.61/2.62 P = 2.61/2.62 f_2#(x, y, z) -> f_2#(x, y, z + 1) [x > y && x > z] 2.61/2.62 R = 2.61/2.62 f(true, x, y, z) -> f(x > y && x > z, x, y, z + 1) 2.61/2.62 f(true, I0, I1, I2) -> f(I0 > I1 && I0 > I2, I0, I1 + 1, I2) 2.61/2.62 2.61/2.62 We use the reverse value criterion with the projection function NU: 2.61/2.62 NU[f_2#(z1,z2,z3)] = z1 + -1 * z3 2.61/2.62 2.61/2.62 This gives the following inequalities: 2.61/2.62 x > y && x > z ==> x + -1 * z > x + -1 * (z + 1) with x + -1 * z >= 0 2.61/2.62 2.61/2.62 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 2.61/5.60 EOF