5.62/2.48 YES 5.75/2.50 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 5.75/2.50 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.75/2.50 5.75/2.50 5.75/2.50 Termination of the given ITRS could be proven: 5.75/2.50 5.75/2.50 (0) ITRS 5.75/2.50 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 5.75/2.50 (2) IDP 5.75/2.50 (3) UsableRulesProof [EQUIVALENT, 0 ms] 5.75/2.50 (4) IDP 5.75/2.50 (5) IDependencyGraphProof [EQUIVALENT, 0 ms] 5.75/2.50 (6) IDP 5.75/2.50 (7) IDPNonInfProof [SOUND, 517 ms] 5.75/2.50 (8) IDP 5.75/2.50 (9) IDependencyGraphProof [EQUIVALENT, 0 ms] 5.75/2.50 (10) TRUE 5.75/2.50 5.75/2.50 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (0) 5.75/2.50 Obligation: 5.75/2.50 ITRS problem: 5.75/2.50 5.75/2.50 The following function symbols are pre-defined: 5.75/2.50 <<< 5.75/2.50 & ~ Bwand: (Integer, Integer) -> Integer 5.75/2.50 >= ~ Ge: (Integer, Integer) -> Boolean 5.75/2.50 | ~ Bwor: (Integer, Integer) -> Integer 5.75/2.50 / ~ Div: (Integer, Integer) -> Integer 5.75/2.50 != ~ Neq: (Integer, Integer) -> Boolean 5.75/2.50 && ~ Land: (Boolean, Boolean) -> Boolean 5.75/2.50 ! ~ Lnot: (Boolean) -> Boolean 5.75/2.50 = ~ Eq: (Integer, Integer) -> Boolean 5.75/2.50 <= ~ Le: (Integer, Integer) -> Boolean 5.75/2.50 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.75/2.50 % ~ Mod: (Integer, Integer) -> Integer 5.75/2.50 > ~ Gt: (Integer, Integer) -> Boolean 5.75/2.50 + ~ Add: (Integer, Integer) -> Integer 5.75/2.50 -1 ~ UnaryMinus: (Integer) -> Integer 5.75/2.50 < ~ Lt: (Integer, Integer) -> Boolean 5.75/2.50 || ~ Lor: (Boolean, Boolean) -> Boolean 5.75/2.50 - ~ Sub: (Integer, Integer) -> Integer 5.75/2.50 ~ ~ Bwnot: (Integer) -> Integer 5.75/2.50 * ~ Mul: (Integer, Integer) -> Integer 5.75/2.50 >>> 5.75/2.50 5.75/2.50 The TRS R consists of the following rules: 5.75/2.50 eval_0(x, y, z) -> Cond_eval_0(y > 0, x, y, z) 5.75/2.50 Cond_eval_0(TRUE, x, y, z) -> eval_1(x, y, z) 5.75/2.50 eval_1(x, y, z) -> Cond_eval_1(y > x && z > y && y > 0, x, y, z) 5.75/2.50 Cond_eval_1(TRUE, x, y, z) -> eval_1(x + y, y, z) 5.75/2.50 eval_1(x, y, z) -> Cond_eval_11(y > x && z > y && y > 0, x, y, z) 5.75/2.50 Cond_eval_11(TRUE, x, y, z) -> eval_1(x, y, x - y) 5.75/2.50 The set Q consists of the following terms: 5.75/2.50 eval_0(x0, x1, x2) 5.75/2.50 Cond_eval_0(TRUE, x0, x1, x2) 5.75/2.50 eval_1(x0, x1, x2) 5.75/2.50 Cond_eval_1(TRUE, x0, x1, x2) 5.75/2.50 Cond_eval_11(TRUE, x0, x1, x2) 5.75/2.50 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (1) ITRStoIDPProof (EQUIVALENT) 5.75/2.50 Added dependency pairs 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (2) 5.75/2.50 Obligation: 5.75/2.50 IDP problem: 5.75/2.50 The following function symbols are pre-defined: 5.75/2.50 <<< 5.75/2.50 & ~ Bwand: (Integer, Integer) -> Integer 5.75/2.50 >= ~ Ge: (Integer, Integer) -> Boolean 5.75/2.50 | ~ Bwor: (Integer, Integer) -> Integer 5.75/2.50 / ~ Div: (Integer, Integer) -> Integer 5.75/2.50 != ~ Neq: (Integer, Integer) -> Boolean 5.75/2.50 && ~ Land: (Boolean, Boolean) -> Boolean 5.75/2.50 ! ~ Lnot: (Boolean) -> Boolean 5.75/2.50 = ~ Eq: (Integer, Integer) -> Boolean 5.75/2.50 <= ~ Le: (Integer, Integer) -> Boolean 5.75/2.50 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.75/2.50 % ~ Mod: (Integer, Integer) -> Integer 5.75/2.50 > ~ Gt: (Integer, Integer) -> Boolean 5.75/2.50 + ~ Add: (Integer, Integer) -> Integer 5.75/2.50 -1 ~ UnaryMinus: (Integer) -> Integer 5.75/2.50 < ~ Lt: (Integer, Integer) -> Boolean 5.75/2.50 || ~ Lor: (Boolean, Boolean) -> Boolean 5.75/2.50 - ~ Sub: (Integer, Integer) -> Integer 5.75/2.50 ~ ~ Bwnot: (Integer) -> Integer 5.75/2.50 * ~ Mul: (Integer, Integer) -> Integer 5.75/2.50 >>> 5.75/2.50 5.75/2.50 5.75/2.50 The following domains are used: 5.75/2.50 Integer, Boolean 5.75/2.50 5.75/2.50 The ITRS R consists of the following rules: 5.75/2.50 eval_0(x, y, z) -> Cond_eval_0(y > 0, x, y, z) 5.75/2.50 Cond_eval_0(TRUE, x, y, z) -> eval_1(x, y, z) 5.75/2.50 eval_1(x, y, z) -> Cond_eval_1(y > x && z > y && y > 0, x, y, z) 5.75/2.50 Cond_eval_1(TRUE, x, y, z) -> eval_1(x + y, y, z) 5.75/2.50 eval_1(x, y, z) -> Cond_eval_11(y > x && z > y && y > 0, x, y, z) 5.75/2.50 Cond_eval_11(TRUE, x, y, z) -> eval_1(x, y, x - y) 5.75/2.50 5.75/2.50 The integer pair graph contains the following rules and edges: 5.75/2.50 (0): EVAL_0(x[0], y[0], z[0]) -> COND_EVAL_0(y[0] > 0, x[0], y[0], z[0]) 5.75/2.50 (1): COND_EVAL_0(TRUE, x[1], y[1], z[1]) -> EVAL_1(x[1], y[1], z[1]) 5.75/2.50 (2): EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(y[2] > x[2] && z[2] > y[2] && y[2] > 0, x[2], y[2], z[2]) 5.75/2.50 (3): COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(x[3] + y[3], y[3], z[3]) 5.75/2.50 (4): EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(y[4] > x[4] && z[4] > y[4] && y[4] > 0, x[4], y[4], z[4]) 5.75/2.50 (5): COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], x[5] - y[5]) 5.75/2.50 5.75/2.50 (0) -> (1), if (y[0] > 0 & x[0] ->^* x[1] & y[0] ->^* y[1] & z[0] ->^* z[1]) 5.75/2.50 (1) -> (2), if (x[1] ->^* x[2] & y[1] ->^* y[2] & z[1] ->^* z[2]) 5.75/2.50 (1) -> (4), if (x[1] ->^* x[4] & y[1] ->^* y[4] & z[1] ->^* z[4]) 5.75/2.50 (2) -> (3), if (y[2] > x[2] && z[2] > y[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3] & z[2] ->^* z[3]) 5.75/2.50 (3) -> (2), if (x[3] + y[3] ->^* x[2] & y[3] ->^* y[2] & z[3] ->^* z[2]) 5.75/2.50 (3) -> (4), if (x[3] + y[3] ->^* x[4] & y[3] ->^* y[4] & z[3] ->^* z[4]) 5.75/2.50 (4) -> (5), if (y[4] > x[4] && z[4] > y[4] && y[4] > 0 & x[4] ->^* x[5] & y[4] ->^* y[5] & z[4] ->^* z[5]) 5.75/2.50 (5) -> (2), if (x[5] ->^* x[2] & y[5] ->^* y[2] & x[5] - y[5] ->^* z[2]) 5.75/2.50 (5) -> (4), if (x[5] ->^* x[4] & y[5] ->^* y[4] & x[5] - y[5] ->^* z[4]) 5.75/2.50 5.75/2.50 The set Q consists of the following terms: 5.75/2.50 eval_0(x0, x1, x2) 5.75/2.50 Cond_eval_0(TRUE, x0, x1, x2) 5.75/2.50 eval_1(x0, x1, x2) 5.75/2.50 Cond_eval_1(TRUE, x0, x1, x2) 5.75/2.50 Cond_eval_11(TRUE, x0, x1, x2) 5.75/2.50 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (3) UsableRulesProof (EQUIVALENT) 5.75/2.50 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (4) 5.75/2.50 Obligation: 5.75/2.50 IDP problem: 5.75/2.50 The following function symbols are pre-defined: 5.75/2.50 <<< 5.75/2.50 & ~ Bwand: (Integer, Integer) -> Integer 5.75/2.50 >= ~ Ge: (Integer, Integer) -> Boolean 5.75/2.50 | ~ Bwor: (Integer, Integer) -> Integer 5.75/2.50 / ~ Div: (Integer, Integer) -> Integer 5.75/2.50 != ~ Neq: (Integer, Integer) -> Boolean 5.75/2.50 && ~ Land: (Boolean, Boolean) -> Boolean 5.75/2.50 ! ~ Lnot: (Boolean) -> Boolean 5.75/2.50 = ~ Eq: (Integer, Integer) -> Boolean 5.75/2.50 <= ~ Le: (Integer, Integer) -> Boolean 5.75/2.50 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.75/2.50 % ~ Mod: (Integer, Integer) -> Integer 5.75/2.50 > ~ Gt: (Integer, Integer) -> Boolean 5.75/2.50 + ~ Add: (Integer, Integer) -> Integer 5.75/2.50 -1 ~ UnaryMinus: (Integer) -> Integer 5.75/2.50 < ~ Lt: (Integer, Integer) -> Boolean 5.75/2.50 || ~ Lor: (Boolean, Boolean) -> Boolean 5.75/2.50 - ~ Sub: (Integer, Integer) -> Integer 5.75/2.50 ~ ~ Bwnot: (Integer) -> Integer 5.75/2.50 * ~ Mul: (Integer, Integer) -> Integer 5.75/2.50 >>> 5.75/2.50 5.75/2.50 5.75/2.50 The following domains are used: 5.75/2.50 Integer, Boolean 5.75/2.50 5.75/2.50 R is empty. 5.75/2.50 5.75/2.50 The integer pair graph contains the following rules and edges: 5.75/2.50 (0): EVAL_0(x[0], y[0], z[0]) -> COND_EVAL_0(y[0] > 0, x[0], y[0], z[0]) 5.75/2.50 (1): COND_EVAL_0(TRUE, x[1], y[1], z[1]) -> EVAL_1(x[1], y[1], z[1]) 5.75/2.50 (2): EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(y[2] > x[2] && z[2] > y[2] && y[2] > 0, x[2], y[2], z[2]) 5.75/2.50 (3): COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(x[3] + y[3], y[3], z[3]) 5.75/2.50 (4): EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(y[4] > x[4] && z[4] > y[4] && y[4] > 0, x[4], y[4], z[4]) 5.75/2.50 (5): COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], x[5] - y[5]) 5.75/2.50 5.75/2.50 (0) -> (1), if (y[0] > 0 & x[0] ->^* x[1] & y[0] ->^* y[1] & z[0] ->^* z[1]) 5.75/2.50 (1) -> (2), if (x[1] ->^* x[2] & y[1] ->^* y[2] & z[1] ->^* z[2]) 5.75/2.50 (1) -> (4), if (x[1] ->^* x[4] & y[1] ->^* y[4] & z[1] ->^* z[4]) 5.75/2.50 (2) -> (3), if (y[2] > x[2] && z[2] > y[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3] & z[2] ->^* z[3]) 5.75/2.50 (3) -> (2), if (x[3] + y[3] ->^* x[2] & y[3] ->^* y[2] & z[3] ->^* z[2]) 5.75/2.50 (3) -> (4), if (x[3] + y[3] ->^* x[4] & y[3] ->^* y[4] & z[3] ->^* z[4]) 5.75/2.50 (4) -> (5), if (y[4] > x[4] && z[4] > y[4] && y[4] > 0 & x[4] ->^* x[5] & y[4] ->^* y[5] & z[4] ->^* z[5]) 5.75/2.50 (5) -> (2), if (x[5] ->^* x[2] & y[5] ->^* y[2] & x[5] - y[5] ->^* z[2]) 5.75/2.50 (5) -> (4), if (x[5] ->^* x[4] & y[5] ->^* y[4] & x[5] - y[5] ->^* z[4]) 5.75/2.50 5.75/2.50 The set Q consists of the following terms: 5.75/2.50 eval_0(x0, x1, x2) 5.75/2.50 Cond_eval_0(TRUE, x0, x1, x2) 5.75/2.50 eval_1(x0, x1, x2) 5.75/2.50 Cond_eval_1(TRUE, x0, x1, x2) 5.75/2.50 Cond_eval_11(TRUE, x0, x1, x2) 5.75/2.50 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (5) IDependencyGraphProof (EQUIVALENT) 5.75/2.50 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (6) 5.75/2.50 Obligation: 5.75/2.50 IDP problem: 5.75/2.50 The following function symbols are pre-defined: 5.75/2.50 <<< 5.75/2.50 & ~ Bwand: (Integer, Integer) -> Integer 5.75/2.50 >= ~ Ge: (Integer, Integer) -> Boolean 5.75/2.50 | ~ Bwor: (Integer, Integer) -> Integer 5.75/2.50 / ~ Div: (Integer, Integer) -> Integer 5.75/2.50 != ~ Neq: (Integer, Integer) -> Boolean 5.75/2.50 && ~ Land: (Boolean, Boolean) -> Boolean 5.75/2.50 ! ~ Lnot: (Boolean) -> Boolean 5.75/2.50 = ~ Eq: (Integer, Integer) -> Boolean 5.75/2.50 <= ~ Le: (Integer, Integer) -> Boolean 5.75/2.50 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.75/2.50 % ~ Mod: (Integer, Integer) -> Integer 5.75/2.50 > ~ Gt: (Integer, Integer) -> Boolean 5.75/2.50 + ~ Add: (Integer, Integer) -> Integer 5.75/2.50 -1 ~ UnaryMinus: (Integer) -> Integer 5.75/2.50 < ~ Lt: (Integer, Integer) -> Boolean 5.75/2.50 || ~ Lor: (Boolean, Boolean) -> Boolean 5.75/2.50 - ~ Sub: (Integer, Integer) -> Integer 5.75/2.50 ~ ~ Bwnot: (Integer) -> Integer 5.75/2.50 * ~ Mul: (Integer, Integer) -> Integer 5.75/2.50 >>> 5.75/2.50 5.75/2.50 5.75/2.50 The following domains are used: 5.75/2.50 Integer, Boolean 5.75/2.50 5.75/2.50 R is empty. 5.75/2.50 5.75/2.50 The integer pair graph contains the following rules and edges: 5.75/2.50 (5): COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], x[5] - y[5]) 5.75/2.50 (4): EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(y[4] > x[4] && z[4] > y[4] && y[4] > 0, x[4], y[4], z[4]) 5.75/2.50 (3): COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(x[3] + y[3], y[3], z[3]) 5.75/2.50 (2): EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(y[2] > x[2] && z[2] > y[2] && y[2] > 0, x[2], y[2], z[2]) 5.75/2.50 5.75/2.50 (3) -> (2), if (x[3] + y[3] ->^* x[2] & y[3] ->^* y[2] & z[3] ->^* z[2]) 5.75/2.50 (5) -> (2), if (x[5] ->^* x[2] & y[5] ->^* y[2] & x[5] - y[5] ->^* z[2]) 5.75/2.50 (2) -> (3), if (y[2] > x[2] && z[2] > y[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3] & z[2] ->^* z[3]) 5.75/2.50 (3) -> (4), if (x[3] + y[3] ->^* x[4] & y[3] ->^* y[4] & z[3] ->^* z[4]) 5.75/2.50 (5) -> (4), if (x[5] ->^* x[4] & y[5] ->^* y[4] & x[5] - y[5] ->^* z[4]) 5.75/2.50 (4) -> (5), if (y[4] > x[4] && z[4] > y[4] && y[4] > 0 & x[4] ->^* x[5] & y[4] ->^* y[5] & z[4] ->^* z[5]) 5.75/2.50 5.75/2.50 The set Q consists of the following terms: 5.75/2.50 eval_0(x0, x1, x2) 5.75/2.50 Cond_eval_0(TRUE, x0, x1, x2) 5.75/2.50 eval_1(x0, x1, x2) 5.75/2.50 Cond_eval_1(TRUE, x0, x1, x2) 5.75/2.50 Cond_eval_11(TRUE, x0, x1, x2) 5.75/2.50 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (7) IDPNonInfProof (SOUND) 5.75/2.50 Used the following options for this NonInfProof: 5.75/2.50 5.75/2.50 IDPGPoloSolver: 5.75/2.50 Range: [(-1,2)] 5.75/2.50 IsNat: false 5.75/2.50 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@7c041da7 5.75/2.50 Constraint Generator: NonInfConstraintGenerator: 5.75/2.50 PathGenerator: MetricPathGenerator: 5.75/2.50 Max Left Steps: 1 5.75/2.50 Max Right Steps: 1 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 The constraints were generated the following way: 5.75/2.50 5.75/2.50 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 5.75/2.50 5.75/2.50 Note that final constraints are written in bold face. 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 For Pair COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], -(x[5], y[5])) the following chains were created: 5.75/2.50 *We consider the chain EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]), COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], -(x[5], y[5])), EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) which results in the following constraint: 5.75/2.50 5.75/2.50 (1) (&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0))=TRUE & x[4]=x[5] & y[4]=y[5] & z[4]=z[5] & x[5]=x[2] & y[5]=y[2] & -(x[5], y[5])=z[2] ==> COND_EVAL_11(TRUE, x[5], y[5], z[5])_>=_NonInfC & COND_EVAL_11(TRUE, x[5], y[5], z[5])_>=_EVAL_1(x[5], y[5], -(x[5], y[5])) & (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.75/2.50 5.75/2.50 (2) (>(y[4], 0)=TRUE & >(y[4], x[4])=TRUE & >(z[4], y[4])=TRUE ==> COND_EVAL_11(TRUE, x[4], y[4], z[4])_>=_NonInfC & COND_EVAL_11(TRUE, x[4], y[4], z[4])_>=_EVAL_1(x[4], y[4], -(x[4], y[4])) & (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.75/2.50 5.75/2.50 (3) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.75/2.50 5.75/2.50 (4) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.75/2.50 5.75/2.50 (5) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 5.75/2.50 5.75/2.50 (6) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 (7) (y[4] + [-1] >= 0 & y[4] + [-1] + x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 *We consider the chain EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]), COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], -(x[5], y[5])), EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) which results in the following constraint: 5.75/2.50 5.75/2.50 (1) (&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0))=TRUE & x[4]=x[5] & y[4]=y[5] & z[4]=z[5] & x[5]=x[4]1 & y[5]=y[4]1 & -(x[5], y[5])=z[4]1 ==> COND_EVAL_11(TRUE, x[5], y[5], z[5])_>=_NonInfC & COND_EVAL_11(TRUE, x[5], y[5], z[5])_>=_EVAL_1(x[5], y[5], -(x[5], y[5])) & (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.75/2.50 5.75/2.50 (2) (>(y[4], 0)=TRUE & >(y[4], x[4])=TRUE & >(z[4], y[4])=TRUE ==> COND_EVAL_11(TRUE, x[4], y[4], z[4])_>=_NonInfC & COND_EVAL_11(TRUE, x[4], y[4], z[4])_>=_EVAL_1(x[4], y[4], -(x[4], y[4])) & (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.75/2.50 5.75/2.50 (3) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.75/2.50 5.75/2.50 (4) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.75/2.50 5.75/2.50 (5) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 5.75/2.50 5.75/2.50 (6) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 (7) (y[4] + [-1] >= 0 & y[4] + [-1] + x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 For Pair EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) the following chains were created: 5.75/2.50 *We consider the chain EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]), COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], -(x[5], y[5])) which results in the following constraint: 5.75/2.50 5.75/2.50 (1) (&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0))=TRUE & x[4]=x[5] & y[4]=y[5] & z[4]=z[5] ==> EVAL_1(x[4], y[4], z[4])_>=_NonInfC & EVAL_1(x[4], y[4], z[4])_>=_COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) & (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.75/2.50 5.75/2.50 (2) (>(y[4], 0)=TRUE & >(y[4], x[4])=TRUE & >(z[4], y[4])=TRUE ==> EVAL_1(x[4], y[4], z[4])_>=_NonInfC & EVAL_1(x[4], y[4], z[4])_>=_COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) & (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.75/2.50 5.75/2.50 (3) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]z[4] + [(-1)bni_21]x[4] >= 0 & [(-1)bso_22] + z[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.75/2.50 5.75/2.50 (4) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]z[4] + [(-1)bni_21]x[4] >= 0 & [(-1)bso_22] + z[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.75/2.50 5.75/2.50 (5) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 ==> (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]z[4] + [(-1)bni_21]x[4] >= 0 & [(-1)bso_22] + z[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 5.75/2.50 5.75/2.50 (6) (y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]z[4] + [(-1)bni_21]x[4] >= 0 & [(-1)bso_22] + z[4] >= 0) 5.75/2.50 5.75/2.50 (7) (y[4] + [-1] >= 0 & y[4] + [-1] + x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]z[4] + [bni_21]x[4] >= 0 & [(-1)bso_22] + z[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 For Pair COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(+(x[3], y[3]), y[3], z[3]) the following chains were created: 5.75/2.50 *We consider the chain EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]), COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(+(x[3], y[3]), y[3], z[3]), EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) which results in the following constraint: 5.75/2.50 5.75/2.50 (1) (&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & z[2]=z[3] & +(x[3], y[3])=x[2]1 & y[3]=y[2]1 & z[3]=z[2]1 ==> COND_EVAL_1(TRUE, x[3], y[3], z[3])_>=_NonInfC & COND_EVAL_1(TRUE, x[3], y[3], z[3])_>=_EVAL_1(+(x[3], y[3]), y[3], z[3]) & (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.75/2.50 5.75/2.50 (2) (>(y[2], 0)=TRUE & >(y[2], x[2])=TRUE & >(z[2], y[2])=TRUE ==> COND_EVAL_1(TRUE, x[2], y[2], z[2])_>=_NonInfC & COND_EVAL_1(TRUE, x[2], y[2], z[2])_>=_EVAL_1(+(x[2], y[2]), y[2], z[2]) & (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.75/2.50 5.75/2.50 (3) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.75/2.50 5.75/2.50 (4) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.75/2.50 5.75/2.50 (5) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 5.75/2.50 5.75/2.50 (6) (y[2] + [-1] >= 0 & y[2] + [-1] + x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 (7) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 *We consider the chain EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]), COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(+(x[3], y[3]), y[3], z[3]), EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) which results in the following constraint: 5.75/2.50 5.75/2.50 (1) (&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & z[2]=z[3] & +(x[3], y[3])=x[4] & y[3]=y[4] & z[3]=z[4] ==> COND_EVAL_1(TRUE, x[3], y[3], z[3])_>=_NonInfC & COND_EVAL_1(TRUE, x[3], y[3], z[3])_>=_EVAL_1(+(x[3], y[3]), y[3], z[3]) & (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.75/2.50 5.75/2.50 (2) (>(y[2], 0)=TRUE & >(y[2], x[2])=TRUE & >(z[2], y[2])=TRUE ==> COND_EVAL_1(TRUE, x[2], y[2], z[2])_>=_NonInfC & COND_EVAL_1(TRUE, x[2], y[2], z[2])_>=_EVAL_1(+(x[2], y[2]), y[2], z[2]) & (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.75/2.50 5.75/2.50 (3) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.75/2.50 5.75/2.50 (4) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.75/2.50 5.75/2.50 (5) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 5.75/2.50 5.75/2.50 (6) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 (7) (y[2] + [-1] >= 0 & y[2] + [-1] + x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 For Pair EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) the following chains were created: 5.75/2.50 *We consider the chain EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]), COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(+(x[3], y[3]), y[3], z[3]) which results in the following constraint: 5.75/2.50 5.75/2.50 (1) (&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & z[2]=z[3] ==> EVAL_1(x[2], y[2], z[2])_>=_NonInfC & EVAL_1(x[2], y[2], z[2])_>=_COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) & (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.75/2.50 5.75/2.50 (2) (>(y[2], 0)=TRUE & >(y[2], x[2])=TRUE & >(z[2], y[2])=TRUE ==> EVAL_1(x[2], y[2], z[2])_>=_NonInfC & EVAL_1(x[2], y[2], z[2])_>=_COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) & (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=)) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.75/2.50 5.75/2.50 (3) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]z[2] + [(-1)bni_25]x[2] >= 0 & [(-1)bso_26] + y[2] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.75/2.50 5.75/2.50 (4) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]z[2] + [(-1)bni_25]x[2] >= 0 & [(-1)bso_26] + y[2] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.75/2.50 5.75/2.50 (5) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 ==> (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]z[2] + [(-1)bni_25]x[2] >= 0 & [(-1)bso_26] + y[2] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 5.75/2.50 5.75/2.50 (6) (y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]z[2] + [(-1)bni_25]x[2] >= 0 & [(-1)bso_26] + y[2] >= 0) 5.75/2.50 5.75/2.50 (7) (y[2] + [-1] >= 0 & y[2] + [-1] + x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]z[2] + [bni_25]x[2] >= 0 & [(-1)bso_26] + y[2] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 To summarize, we get the following constraints P__>=_ for the following pairs. 5.75/2.50 5.75/2.50 *COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], -(x[5], y[5])) 5.75/2.50 5.75/2.50 *(y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[4] + [-1] >= 0 & y[4] + [-1] + x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + [-1]x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[4] + [-1] >= 0 & y[4] + [-1] + x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(EVAL_1(x[5], y[5], -(x[5], y[5]))), >=) & [(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x[4] >= 0 & [(-1)bso_20] + y[4] + x[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 *EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) 5.75/2.50 5.75/2.50 *(y[4] + [-1] >= 0 & y[4] + [-1] + [-1]x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]z[4] + [(-1)bni_21]x[4] >= 0 & [(-1)bso_22] + z[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[4] + [-1] >= 0 & y[4] + [-1] + x[4] >= 0 & z[4] + [-1] + [-1]y[4] >= 0 & x[4] >= 0 ==> (U^Increasing(COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]z[4] + [bni_21]x[4] >= 0 & [(-1)bso_22] + z[4] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 *COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(+(x[3], y[3]), y[3], z[3]) 5.75/2.50 5.75/2.50 *(y[2] + [-1] >= 0 & y[2] + [-1] + x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [(-1)bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[2] + [-1] >= 0 & y[2] + [-1] + x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL_1(+(x[3], y[3]), y[3], z[3])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]z[2] + [(-1)bni_23]y[2] + [bni_23]x[2] >= 0 & [(-1)bso_24] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 *EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) 5.75/2.50 5.75/2.50 *(y[2] + [-1] >= 0 & y[2] + [-1] + [-1]x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]z[2] + [(-1)bni_25]x[2] >= 0 & [(-1)bso_26] + y[2] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 *(y[2] + [-1] >= 0 & y[2] + [-1] + x[2] >= 0 & z[2] + [-1] + [-1]y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]z[2] + [bni_25]x[2] >= 0 & [(-1)bso_26] + y[2] >= 0) 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 5.75/2.50 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 5.75/2.50 5.75/2.50 Using the following integer polynomial ordering the resulting constraints can be solved 5.75/2.50 5.75/2.50 Polynomial interpretation over integers[POLO]: 5.75/2.50 5.75/2.50 POL(TRUE) = 0 5.75/2.50 POL(FALSE) = [1] 5.75/2.50 POL(COND_EVAL_11(x_1, x_2, x_3, x_4)) = [-1] + [-1]x_2 5.75/2.50 POL(EVAL_1(x_1, x_2, x_3)) = [-1] + x_3 + [-1]x_1 5.75/2.50 POL(-(x_1, x_2)) = x_1 + [-1]x_2 5.75/2.50 POL(&&(x_1, x_2)) = [-1] 5.75/2.50 POL(>(x_1, x_2)) = [-1] 5.75/2.50 POL(0) = 0 5.75/2.50 POL(COND_EVAL_1(x_1, x_2, x_3, x_4)) = [-1] + x_4 + [-1]x_3 + [-1]x_2 5.75/2.50 POL(+(x_1, x_2)) = x_1 + x_2 5.75/2.50 5.75/2.50 5.75/2.50 The following pairs are in P_>: 5.75/2.50 5.75/2.50 5.75/2.50 COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], -(x[5], y[5])) 5.75/2.50 EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) 5.75/2.50 EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) 5.75/2.50 5.75/2.50 5.75/2.50 The following pairs are in P_bound: 5.75/2.50 5.75/2.50 5.75/2.50 EVAL_1(x[4], y[4], z[4]) -> COND_EVAL_11(&&(&&(>(y[4], x[4]), >(z[4], y[4])), >(y[4], 0)), x[4], y[4], z[4]) 5.75/2.50 EVAL_1(x[2], y[2], z[2]) -> COND_EVAL_1(&&(&&(>(y[2], x[2]), >(z[2], y[2])), >(y[2], 0)), x[2], y[2], z[2]) 5.75/2.50 5.75/2.50 5.75/2.50 The following pairs are in P_>=: 5.75/2.50 5.75/2.50 5.75/2.50 COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(+(x[3], y[3]), y[3], z[3]) 5.75/2.50 5.75/2.50 5.75/2.50 At least the following rules have been oriented under context sensitive arithmetic replacement: 5.75/2.50 5.75/2.50 TRUE^1 -> &&(TRUE, TRUE)^1 5.75/2.50 FALSE^1 -> &&(TRUE, FALSE)^1 5.75/2.50 FALSE^1 -> &&(FALSE, TRUE)^1 5.75/2.50 FALSE^1 -> &&(FALSE, FALSE)^1 5.75/2.50 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (8) 5.75/2.50 Obligation: 5.75/2.50 IDP problem: 5.75/2.50 The following function symbols are pre-defined: 5.75/2.50 <<< 5.75/2.50 & ~ Bwand: (Integer, Integer) -> Integer 5.75/2.50 >= ~ Ge: (Integer, Integer) -> Boolean 5.75/2.50 | ~ Bwor: (Integer, Integer) -> Integer 5.75/2.50 / ~ Div: (Integer, Integer) -> Integer 5.75/2.50 != ~ Neq: (Integer, Integer) -> Boolean 5.75/2.50 && ~ Land: (Boolean, Boolean) -> Boolean 5.75/2.50 ! ~ Lnot: (Boolean) -> Boolean 5.75/2.50 = ~ Eq: (Integer, Integer) -> Boolean 5.75/2.50 <= ~ Le: (Integer, Integer) -> Boolean 5.75/2.50 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.75/2.50 % ~ Mod: (Integer, Integer) -> Integer 5.75/2.50 > ~ Gt: (Integer, Integer) -> Boolean 5.75/2.50 + ~ Add: (Integer, Integer) -> Integer 5.75/2.50 -1 ~ UnaryMinus: (Integer) -> Integer 5.75/2.50 < ~ Lt: (Integer, Integer) -> Boolean 5.75/2.50 || ~ Lor: (Boolean, Boolean) -> Boolean 5.75/2.50 - ~ Sub: (Integer, Integer) -> Integer 5.75/2.50 ~ ~ Bwnot: (Integer) -> Integer 5.75/2.50 * ~ Mul: (Integer, Integer) -> Integer 5.75/2.50 >>> 5.75/2.50 5.75/2.50 5.75/2.50 The following domains are used: 5.75/2.50 Integer 5.75/2.50 5.75/2.50 R is empty. 5.75/2.50 5.75/2.50 The integer pair graph contains the following rules and edges: 5.75/2.50 (5): COND_EVAL_11(TRUE, x[5], y[5], z[5]) -> EVAL_1(x[5], y[5], x[5] - y[5]) 5.75/2.50 (3): COND_EVAL_1(TRUE, x[3], y[3], z[3]) -> EVAL_1(x[3] + y[3], y[3], z[3]) 5.75/2.50 5.75/2.50 5.75/2.50 The set Q consists of the following terms: 5.75/2.50 eval_0(x0, x1, x2) 5.75/2.50 Cond_eval_0(TRUE, x0, x1, x2) 5.75/2.50 eval_1(x0, x1, x2) 5.75/2.50 Cond_eval_1(TRUE, x0, x1, x2) 5.75/2.50 Cond_eval_11(TRUE, x0, x1, x2) 5.75/2.50 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (9) IDependencyGraphProof (EQUIVALENT) 5.75/2.50 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. 5.75/2.50 ---------------------------------------- 5.75/2.50 5.75/2.50 (10) 5.75/2.50 TRUE 5.75/2.53 EOF