0.00/0.17 YES 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 f#(true, x, y) -> f#(x > y, x + 1, y + 2) 0.00/0.17 R = 0.00/0.17 f(true, x, y) -> f(x > y, x + 1, y + 2) 0.00/0.17 0.00/0.17 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 f#(true, x, y) -> f_1#(x, y) 0.00/0.17 f_1#(x, y) -> f#(x > y, x + 1, y + 2) 0.00/0.17 f_1#(x, y) -> f_1#(x + 1, y + 2) [x > y] 0.00/0.17 R = 0.00/0.17 f(true, x, y) -> f(x > y, x + 1, y + 2) 0.00/0.17 0.00/0.17 The dependency graph for this problem is: 0.00/0.17 0 -> 2, 1 0.00/0.17 1 -> 0.00/0.17 2 -> 2, 1 0.00/0.17 Where: 0.00/0.17 0) f#(true, x, y) -> f_1#(x, y) 0.00/0.17 1) f_1#(x, y) -> f#(x > y, x + 1, y + 2) 0.00/0.17 2) f_1#(x, y) -> f_1#(x + 1, y + 2) [x > y] 0.00/0.17 0.00/0.17 We have the following SCCs. 0.00/0.17 { 2 } 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 f_1#(x, y) -> f_1#(x + 1, y + 2) [x > y] 0.00/0.17 R = 0.00/0.17 f(true, x, y) -> f(x > y, x + 1, y + 2) 0.00/0.17 0.00/0.17 We use the reverse value criterion with the projection function NU: 0.00/0.17 NU[f_1#(z1,z2)] = z1 + -1 * z2 0.00/0.17 0.00/0.17 This gives the following inequalities: 0.00/0.17 x > y ==> x + -1 * y > x + 1 + -1 * (y + 2) with x + -1 * y >= 0 0.00/0.17 0.00/0.17 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.15 EOF