0.00/0.44 YES 0.00/0.44 0.00/0.44 DP problem for innermost termination. 0.00/0.44 P = 0.00/0.44 eval#(x, y) -> eval#(x, y) [y > 0 && 0 >= x && 0 >= y] 0.00/0.44 eval#(I0, I1) -> eval#(I0, I1) [I0 > 0 && 0 >= I0 && 0 >= I1] 0.00/0.44 eval#(I2, I3) -> eval#(I2, I3 - 1) [I3 > 0 && 0 >= I2] 0.00/0.44 eval#(I4, I5) -> eval#(I4, I5 - 1) [I4 > 0 && 0 >= I4 && I5 > 0] 0.00/0.44 eval#(I6, I7) -> eval#(I6 - 1, I7) [I7 > 0 && I6 > 0] 0.00/0.44 eval#(I8, I9) -> eval#(I8 - 1, I9) [I8 > 0] 0.00/0.44 R = 0.00/0.44 eval(x, y) -> eval(x, y) [y > 0 && 0 >= x && 0 >= y] 0.00/0.44 eval(I0, I1) -> eval(I0, I1) [I0 > 0 && 0 >= I0 && 0 >= I1] 0.00/0.44 eval(I2, I3) -> eval(I2, I3 - 1) [I3 > 0 && 0 >= I2] 0.00/0.44 eval(I4, I5) -> eval(I4, I5 - 1) [I4 > 0 && 0 >= I4 && I5 > 0] 0.00/0.44 eval(I6, I7) -> eval(I6 - 1, I7) [I7 > 0 && I6 > 0] 0.00/0.44 eval(I8, I9) -> eval(I8 - 1, I9) [I8 > 0] 0.00/0.44 0.00/0.44 The dependency graph for this problem is: 0.00/0.44 0 -> 0.00/0.44 1 -> 0.00/0.44 2 -> 2 0.00/0.44 3 -> 0.00/0.44 4 -> 2, 4, 5 0.00/0.44 5 -> 2, 4, 5 0.00/0.44 Where: 0.00/0.44 0) eval#(x, y) -> eval#(x, y) [y > 0 && 0 >= x && 0 >= y] 0.00/0.44 1) eval#(I0, I1) -> eval#(I0, I1) [I0 > 0 && 0 >= I0 && 0 >= I1] 0.00/0.44 2) eval#(I2, I3) -> eval#(I2, I3 - 1) [I3 > 0 && 0 >= I2] 0.00/0.44 3) eval#(I4, I5) -> eval#(I4, I5 - 1) [I4 > 0 && 0 >= I4 && I5 > 0] 0.00/0.44 4) eval#(I6, I7) -> eval#(I6 - 1, I7) [I7 > 0 && I6 > 0] 0.00/0.44 5) eval#(I8, I9) -> eval#(I8 - 1, I9) [I8 > 0] 0.00/0.44 0.00/0.44 We have the following SCCs. 0.00/0.44 { 4, 5 } 0.00/0.44 { 2 } 0.00/0.44 0.00/0.44 DP problem for innermost termination. 0.00/0.44 P = 0.00/0.44 eval#(I2, I3) -> eval#(I2, I3 - 1) [I3 > 0 && 0 >= I2] 0.00/0.44 R = 0.00/0.44 eval(x, y) -> eval(x, y) [y > 0 && 0 >= x && 0 >= y] 0.00/0.44 eval(I0, I1) -> eval(I0, I1) [I0 > 0 && 0 >= I0 && 0 >= I1] 0.00/0.44 eval(I2, I3) -> eval(I2, I3 - 1) [I3 > 0 && 0 >= I2] 0.00/0.44 eval(I4, I5) -> eval(I4, I5 - 1) [I4 > 0 && 0 >= I4 && I5 > 0] 0.00/0.44 eval(I6, I7) -> eval(I6 - 1, I7) [I7 > 0 && I6 > 0] 0.00/0.44 eval(I8, I9) -> eval(I8 - 1, I9) [I8 > 0] 0.00/0.44 0.00/0.44 We use the reverse value criterion with the projection function NU: 0.00/0.44 NU[eval#(z1,z2)] = z2 + -1 * 0 0.00/0.44 0.00/0.44 This gives the following inequalities: 0.00/0.44 I3 > 0 && 0 >= I2 ==> I3 + -1 * 0 > I3 - 1 + -1 * 0 with I3 + -1 * 0 >= 0 0.00/0.44 0.00/0.44 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.44 0.00/0.44 DP problem for innermost termination. 0.00/0.44 P = 0.00/0.44 eval#(I6, I7) -> eval#(I6 - 1, I7) [I7 > 0 && I6 > 0] 0.00/0.44 eval#(I8, I9) -> eval#(I8 - 1, I9) [I8 > 0] 0.00/0.44 R = 0.00/0.44 eval(x, y) -> eval(x, y) [y > 0 && 0 >= x && 0 >= y] 0.00/0.44 eval(I0, I1) -> eval(I0, I1) [I0 > 0 && 0 >= I0 && 0 >= I1] 0.00/0.44 eval(I2, I3) -> eval(I2, I3 - 1) [I3 > 0 && 0 >= I2] 0.00/0.44 eval(I4, I5) -> eval(I4, I5 - 1) [I4 > 0 && 0 >= I4 && I5 > 0] 0.00/0.44 eval(I6, I7) -> eval(I6 - 1, I7) [I7 > 0 && I6 > 0] 0.00/0.44 eval(I8, I9) -> eval(I8 - 1, I9) [I8 > 0] 0.00/0.44 0.00/0.44 We use the reverse value criterion with the projection function NU: 0.00/0.44 NU[eval#(z1,z2)] = z1 0.00/0.44 0.00/0.44 This gives the following inequalities: 0.00/0.44 I7 > 0 && I6 > 0 ==> I6 > I6 - 1 with I6 >= 0 0.00/0.44 I8 > 0 ==> I8 > I8 - 1 with I8 >= 0 0.00/0.44 0.00/0.44 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.42 EOF