6.06/2.46 YES 6.06/2.48 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 6.06/2.48 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.06/2.48 6.06/2.48 6.06/2.48 Termination of the given ITRS could be proven: 6.06/2.48 6.06/2.48 (0) ITRS 6.06/2.48 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 6.06/2.48 (2) IDP 6.06/2.48 (3) UsableRulesProof [EQUIVALENT, 0 ms] 6.06/2.48 (4) IDP 6.06/2.48 (5) IDPNonInfProof [SOUND, 443 ms] 6.06/2.48 (6) AND 6.06/2.48 (7) IDP 6.06/2.48 (8) IDependencyGraphProof [EQUIVALENT, 0 ms] 6.06/2.48 (9) IDP 6.06/2.48 (10) IDPNonInfProof [SOUND, 48 ms] 6.06/2.48 (11) IDP 6.06/2.48 (12) IDependencyGraphProof [EQUIVALENT, 0 ms] 6.06/2.48 (13) TRUE 6.06/2.48 (14) IDP 6.06/2.48 (15) IDependencyGraphProof [EQUIVALENT, 0 ms] 6.06/2.48 (16) IDP 6.06/2.48 (17) IDPNonInfProof [SOUND, 42 ms] 6.06/2.48 (18) IDP 6.06/2.48 (19) IDependencyGraphProof [EQUIVALENT, 0 ms] 6.06/2.48 (20) TRUE 6.06/2.48 6.06/2.48 6.06/2.48 ---------------------------------------- 6.06/2.48 6.06/2.48 (0) 6.06/2.48 Obligation: 6.06/2.48 ITRS problem: 6.06/2.48 6.06/2.48 The following function symbols are pre-defined: 6.06/2.48 <<< 6.06/2.48 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.48 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.48 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.48 / ~ Div: (Integer, Integer) -> Integer 6.06/2.48 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.48 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.48 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.48 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.48 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.48 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.48 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.48 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.48 + ~ Add: (Integer, Integer) -> Integer 6.06/2.48 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.48 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.48 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.48 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.48 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.48 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.48 >>> 6.06/2.48 6.06/2.48 The TRS R consists of the following rules: 6.06/2.48 eval(x, y) -> Cond_eval(x + y > 0 && x > 0, x, y) 6.06/2.48 Cond_eval(TRUE, x, y) -> eval(x - 1, y) 6.06/2.48 eval(x, y) -> Cond_eval1(x + y > 0 && 0 >= x && y > 0, x, y) 6.06/2.48 Cond_eval1(TRUE, x, y) -> eval(x, y - 1) 6.06/2.48 eval(x, y) -> Cond_eval2(x + y > 0 && 0 >= x && 0 >= y, x, y) 6.06/2.48 Cond_eval2(TRUE, x, y) -> eval(x, y) 6.06/2.48 The set Q consists of the following terms: 6.06/2.48 eval(x0, x1) 6.06/2.48 Cond_eval(TRUE, x0, x1) 6.06/2.48 Cond_eval1(TRUE, x0, x1) 6.06/2.48 Cond_eval2(TRUE, x0, x1) 6.06/2.48 6.06/2.48 ---------------------------------------- 6.06/2.48 6.06/2.48 (1) ITRStoIDPProof (EQUIVALENT) 6.06/2.48 Added dependency pairs 6.06/2.48 ---------------------------------------- 6.06/2.48 6.06/2.48 (2) 6.06/2.48 Obligation: 6.06/2.48 IDP problem: 6.06/2.48 The following function symbols are pre-defined: 6.06/2.48 <<< 6.06/2.48 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.48 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.48 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.48 / ~ Div: (Integer, Integer) -> Integer 6.06/2.48 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.48 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.48 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.48 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.48 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.48 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.48 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.48 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.48 + ~ Add: (Integer, Integer) -> Integer 6.06/2.48 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.48 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.48 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.48 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.48 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.48 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.48 >>> 6.06/2.48 6.06/2.48 6.06/2.48 The following domains are used: 6.06/2.48 Boolean, Integer 6.06/2.48 6.06/2.48 The ITRS R consists of the following rules: 6.06/2.48 eval(x, y) -> Cond_eval(x + y > 0 && x > 0, x, y) 6.06/2.48 Cond_eval(TRUE, x, y) -> eval(x - 1, y) 6.06/2.48 eval(x, y) -> Cond_eval1(x + y > 0 && 0 >= x && y > 0, x, y) 6.06/2.48 Cond_eval1(TRUE, x, y) -> eval(x, y - 1) 6.06/2.48 eval(x, y) -> Cond_eval2(x + y > 0 && 0 >= x && 0 >= y, x, y) 6.06/2.48 Cond_eval2(TRUE, x, y) -> eval(x, y) 6.06/2.48 6.06/2.48 The integer pair graph contains the following rules and edges: 6.06/2.48 (0): EVAL(x[0], y[0]) -> COND_EVAL(x[0] + y[0] > 0 && x[0] > 0, x[0], y[0]) 6.06/2.48 (1): COND_EVAL(TRUE, x[1], y[1]) -> EVAL(x[1] - 1, y[1]) 6.06/2.48 (2): EVAL(x[2], y[2]) -> COND_EVAL1(x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0, x[2], y[2]) 6.06/2.48 (3): COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], y[3] - 1) 6.06/2.48 (4): EVAL(x[4], y[4]) -> COND_EVAL2(x[4] + y[4] > 0 && 0 >= x[4] && 0 >= y[4], x[4], y[4]) 6.06/2.48 (5): COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]) 6.06/2.48 6.06/2.48 (0) -> (1), if (x[0] + y[0] > 0 && x[0] > 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) 6.06/2.48 (1) -> (0), if (x[1] - 1 ->^* x[0] & y[1] ->^* y[0]) 6.06/2.48 (1) -> (2), if (x[1] - 1 ->^* x[2] & y[1] ->^* y[2]) 6.06/2.48 (1) -> (4), if (x[1] - 1 ->^* x[4] & y[1] ->^* y[4]) 6.06/2.48 (2) -> (3), if (x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3]) 6.06/2.48 (3) -> (0), if (x[3] ->^* x[0] & y[3] - 1 ->^* y[0]) 6.06/2.48 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2]) 6.06/2.48 (3) -> (4), if (x[3] ->^* x[4] & y[3] - 1 ->^* y[4]) 6.06/2.48 (4) -> (5), if (x[4] + y[4] > 0 && 0 >= x[4] && 0 >= y[4] & x[4] ->^* x[5] & y[4] ->^* y[5]) 6.06/2.48 (5) -> (0), if (x[5] ->^* x[0] & y[5] ->^* y[0]) 6.06/2.48 (5) -> (2), if (x[5] ->^* x[2] & y[5] ->^* y[2]) 6.06/2.48 (5) -> (4), if (x[5] ->^* x[4] & y[5] ->^* y[4]) 6.06/2.48 6.06/2.48 The set Q consists of the following terms: 6.06/2.48 eval(x0, x1) 6.06/2.48 Cond_eval(TRUE, x0, x1) 6.06/2.48 Cond_eval1(TRUE, x0, x1) 6.06/2.48 Cond_eval2(TRUE, x0, x1) 6.06/2.48 6.06/2.48 ---------------------------------------- 6.06/2.48 6.06/2.48 (3) UsableRulesProof (EQUIVALENT) 6.06/2.48 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 6.06/2.48 ---------------------------------------- 6.06/2.48 6.06/2.48 (4) 6.06/2.48 Obligation: 6.06/2.48 IDP problem: 6.06/2.48 The following function symbols are pre-defined: 6.06/2.48 <<< 6.06/2.48 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.48 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.48 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.48 / ~ Div: (Integer, Integer) -> Integer 6.06/2.48 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.48 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.48 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.48 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.48 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.48 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.48 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.48 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.48 + ~ Add: (Integer, Integer) -> Integer 6.06/2.48 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.48 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.48 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.48 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.48 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.48 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.48 >>> 6.06/2.48 6.06/2.48 6.06/2.48 The following domains are used: 6.06/2.48 Boolean, Integer 6.06/2.48 6.06/2.48 R is empty. 6.06/2.48 6.06/2.48 The integer pair graph contains the following rules and edges: 6.06/2.48 (0): EVAL(x[0], y[0]) -> COND_EVAL(x[0] + y[0] > 0 && x[0] > 0, x[0], y[0]) 6.06/2.48 (1): COND_EVAL(TRUE, x[1], y[1]) -> EVAL(x[1] - 1, y[1]) 6.06/2.48 (2): EVAL(x[2], y[2]) -> COND_EVAL1(x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0, x[2], y[2]) 6.06/2.48 (3): COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], y[3] - 1) 6.06/2.48 (4): EVAL(x[4], y[4]) -> COND_EVAL2(x[4] + y[4] > 0 && 0 >= x[4] && 0 >= y[4], x[4], y[4]) 6.06/2.48 (5): COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]) 6.06/2.48 6.06/2.48 (0) -> (1), if (x[0] + y[0] > 0 && x[0] > 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) 6.06/2.48 (1) -> (0), if (x[1] - 1 ->^* x[0] & y[1] ->^* y[0]) 6.06/2.48 (1) -> (2), if (x[1] - 1 ->^* x[2] & y[1] ->^* y[2]) 6.06/2.48 (1) -> (4), if (x[1] - 1 ->^* x[4] & y[1] ->^* y[4]) 6.06/2.48 (2) -> (3), if (x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3]) 6.06/2.48 (3) -> (0), if (x[3] ->^* x[0] & y[3] - 1 ->^* y[0]) 6.06/2.48 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2]) 6.06/2.48 (3) -> (4), if (x[3] ->^* x[4] & y[3] - 1 ->^* y[4]) 6.06/2.48 (4) -> (5), if (x[4] + y[4] > 0 && 0 >= x[4] && 0 >= y[4] & x[4] ->^* x[5] & y[4] ->^* y[5]) 6.06/2.48 (5) -> (0), if (x[5] ->^* x[0] & y[5] ->^* y[0]) 6.06/2.48 (5) -> (2), if (x[5] ->^* x[2] & y[5] ->^* y[2]) 6.06/2.48 (5) -> (4), if (x[5] ->^* x[4] & y[5] ->^* y[4]) 6.06/2.48 6.06/2.48 The set Q consists of the following terms: 6.06/2.48 eval(x0, x1) 6.06/2.48 Cond_eval(TRUE, x0, x1) 6.06/2.48 Cond_eval1(TRUE, x0, x1) 6.06/2.48 Cond_eval2(TRUE, x0, x1) 6.06/2.48 6.06/2.48 ---------------------------------------- 6.06/2.48 6.06/2.48 (5) IDPNonInfProof (SOUND) 6.06/2.48 Used the following options for this NonInfProof: 6.06/2.48 6.06/2.48 IDPGPoloSolver: 6.06/2.48 Range: [(-1,2)] 6.06/2.48 IsNat: false 6.06/2.48 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@60b45b4 6.06/2.48 Constraint Generator: NonInfConstraintGenerator: 6.06/2.48 PathGenerator: MetricPathGenerator: 6.06/2.48 Max Left Steps: 1 6.06/2.48 Max Right Steps: 1 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 The constraints were generated the following way: 6.06/2.48 6.06/2.48 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 6.06/2.48 6.06/2.48 Note that final constraints are written in bold face. 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 For Pair EVAL(x, y) -> COND_EVAL(&&(>(+(x, y), 0), >(x, 0)), x, y) the following chains were created: 6.06/2.48 *We consider the chain EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]), COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]) which results in the following constraint: 6.06/2.48 6.06/2.48 (1) (&&(>(+(x[0], y[0]), 0), >(x[0], 0))=TRUE & x[0]=x[1] & y[0]=y[1] ==> EVAL(x[0], y[0])_>=_NonInfC & EVAL(x[0], y[0])_>=_COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]) & (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=)) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.48 6.06/2.48 (2) (>(+(x[0], y[0]), 0)=TRUE & >(x[0], 0)=TRUE ==> EVAL(x[0], y[0])_>=_NonInfC & EVAL(x[0], y[0])_>=_COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]) & (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=)) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.48 6.06/2.48 (3) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x[0] >= 0 & [(-1)bso_22] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.48 6.06/2.48 (4) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x[0] >= 0 & [(-1)bso_22] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.48 6.06/2.48 (5) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x[0] >= 0 & [(-1)bso_22] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.06/2.48 6.06/2.48 (6) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x[0] >= 0 & [(-1)bso_22] >= 0) 6.06/2.48 6.06/2.48 (7) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x[0] >= 0 & [(-1)bso_22] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 For Pair COND_EVAL(TRUE, x, y) -> EVAL(-(x, 1), y) the following chains were created: 6.06/2.48 *We consider the chain EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]), COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]), EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]) which results in the following constraint: 6.06/2.48 6.06/2.48 (1) (&&(>(+(x[0], y[0]), 0), >(x[0], 0))=TRUE & x[0]=x[1] & y[0]=y[1] & -(x[1], 1)=x[0]1 & y[1]=y[0]1 ==> COND_EVAL(TRUE, x[1], y[1])_>=_NonInfC & COND_EVAL(TRUE, x[1], y[1])_>=_EVAL(-(x[1], 1), y[1]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.48 6.06/2.48 (2) (>(+(x[0], y[0]), 0)=TRUE & >(x[0], 0)=TRUE ==> COND_EVAL(TRUE, x[0], y[0])_>=_NonInfC & COND_EVAL(TRUE, x[0], y[0])_>=_EVAL(-(x[0], 1), y[0]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.48 6.06/2.48 (3) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.48 6.06/2.48 (4) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.48 6.06/2.48 (5) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.06/2.48 6.06/2.48 (6) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 (7) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 *We consider the chain EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]), COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]), EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) which results in the following constraint: 6.06/2.48 6.06/2.48 (1) (&&(>(+(x[0], y[0]), 0), >(x[0], 0))=TRUE & x[0]=x[1] & y[0]=y[1] & -(x[1], 1)=x[2] & y[1]=y[2] ==> COND_EVAL(TRUE, x[1], y[1])_>=_NonInfC & COND_EVAL(TRUE, x[1], y[1])_>=_EVAL(-(x[1], 1), y[1]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.48 6.06/2.48 (2) (>(+(x[0], y[0]), 0)=TRUE & >(x[0], 0)=TRUE ==> COND_EVAL(TRUE, x[0], y[0])_>=_NonInfC & COND_EVAL(TRUE, x[0], y[0])_>=_EVAL(-(x[0], 1), y[0]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.48 6.06/2.48 (3) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.48 6.06/2.48 (4) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.48 6.06/2.48 (5) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.06/2.48 6.06/2.48 (6) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 (7) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 6.06/2.48 *We consider the chain EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]), COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]), EVAL(x[4], y[4]) -> COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(>(+(x[0], y[0]), 0), >(x[0], 0))=TRUE & x[0]=x[1] & y[0]=y[1] & -(x[1], 1)=x[4] & y[1]=y[4] ==> COND_EVAL(TRUE, x[1], y[1])_>=_NonInfC & COND_EVAL(TRUE, x[1], y[1])_>=_EVAL(-(x[1], 1), y[1]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(+(x[0], y[0]), 0)=TRUE & >(x[0], 0)=TRUE ==> COND_EVAL(TRUE, x[0], y[0])_>=_NonInfC & COND_EVAL(TRUE, x[0], y[0])_>=_EVAL(-(x[0], 1), y[0]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 6.06/2.49 6.06/2.49 (6) (x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 (7) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair EVAL(x, y) -> COND_EVAL1(&&(&&(>(+(x, y), 0), >=(0, x)), >(y, 0)), x, y) the following chains were created: 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] ==> EVAL(x[2], y[2])_>=_NonInfC & EVAL(x[2], y[2])_>=_COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) & (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> EVAL(x[2], y[2])_>=_NonInfC & EVAL(x[2], y[2])_>=_COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) & (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x[2] >= 0 & [(-1)bso_26] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x[2] >= 0 & [(-1)bso_26] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x[2] >= 0 & [(-1)bso_26] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x[2] >= 0 & [(-1)bso_26] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair COND_EVAL1(TRUE, x, y) -> EVAL(x, -(y, 1)) the following chains were created: 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)), EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[0] & -(y[3], 1)=y[0] ==> COND_EVAL1(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL1(TRUE, x[3], y[3])_>=_EVAL(x[3], -(y[3], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> COND_EVAL1(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL1(TRUE, x[2], y[2])_>=_EVAL(x[2], -(y[2], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)), EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[2]1 & -(y[3], 1)=y[2]1 ==> COND_EVAL1(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL1(TRUE, x[3], y[3])_>=_EVAL(x[3], -(y[3], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> COND_EVAL1(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL1(TRUE, x[2], y[2])_>=_EVAL(x[2], -(y[2], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)), EVAL(x[4], y[4]) -> COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[4] & -(y[3], 1)=y[4] ==> COND_EVAL1(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL1(TRUE, x[3], y[3])_>=_EVAL(x[3], -(y[3], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> COND_EVAL1(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL1(TRUE, x[2], y[2])_>=_EVAL(x[2], -(y[2], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair EVAL(x, y) -> COND_EVAL2(&&(&&(>(+(x, y), 0), >=(0, x)), >=(0, y)), x, y) the following chains were created: 6.06/2.49 *We consider the chain EVAL(x[4], y[4]) -> COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]), COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4]))=TRUE & x[4]=x[5] & y[4]=y[5] ==> EVAL(x[4], y[4])_>=_NonInfC & EVAL(x[4], y[4])_>=_COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]) & (U^Increasing(COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>=(0, y[4])=TRUE & >(+(x[4], y[4]), 0)=TRUE & >=(0, x[4])=TRUE ==> EVAL(x[4], y[4])_>=_NonInfC & EVAL(x[4], y[4])_>=_COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]) & (U^Increasing(COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) ([-1]y[4] >= 0 & x[4] + [-1] + y[4] >= 0 & [-1]x[4] >= 0 ==> (U^Increasing(COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4])), >=) & [(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x[4] >= 0 & [-1 + (-1)bso_30] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) ([-1]y[4] >= 0 & x[4] + [-1] + y[4] >= 0 & [-1]x[4] >= 0 ==> (U^Increasing(COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4])), >=) & [(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x[4] >= 0 & [-1 + (-1)bso_30] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) ([-1]y[4] >= 0 & x[4] + [-1] + y[4] >= 0 & [-1]x[4] >= 0 ==> (U^Increasing(COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4])), >=) & [(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x[4] >= 0 & [-1 + (-1)bso_30] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We solved constraint (5) using rule (IDP_SMT_SPLIT). 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair COND_EVAL2(TRUE, x, y) -> EVAL(x, y) the following chains were created: 6.06/2.49 *We consider the chain COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]), EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (x[5]=x[0] & y[5]=y[0] ==> COND_EVAL2(TRUE, x[5], y[5])_>=_NonInfC & COND_EVAL2(TRUE, x[5], y[5])_>=_EVAL(x[5], y[5]) & (U^Increasing(EVAL(x[5], y[5])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (COND_EVAL2(TRUE, x[5], y[5])_>=_NonInfC & COND_EVAL2(TRUE, x[5], y[5])_>=_EVAL(x[5], y[5]) & (U^Increasing(EVAL(x[5], y[5])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *We consider the chain COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]), EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (x[5]=x[2] & y[5]=y[2] ==> COND_EVAL2(TRUE, x[5], y[5])_>=_NonInfC & COND_EVAL2(TRUE, x[5], y[5])_>=_EVAL(x[5], y[5]) & (U^Increasing(EVAL(x[5], y[5])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (COND_EVAL2(TRUE, x[5], y[5])_>=_NonInfC & COND_EVAL2(TRUE, x[5], y[5])_>=_EVAL(x[5], y[5]) & (U^Increasing(EVAL(x[5], y[5])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *We consider the chain COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]), EVAL(x[4], y[4]) -> COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (x[5]=x[4] & y[5]=y[4] ==> COND_EVAL2(TRUE, x[5], y[5])_>=_NonInfC & COND_EVAL2(TRUE, x[5], y[5])_>=_EVAL(x[5], y[5]) & (U^Increasing(EVAL(x[5], y[5])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rule (IV) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (COND_EVAL2(TRUE, x[5], y[5])_>=_NonInfC & COND_EVAL2(TRUE, x[5], y[5])_>=_EVAL(x[5], y[5]) & (U^Increasing(EVAL(x[5], y[5])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) ((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 To summarize, we get the following constraints P__>=_ for the following pairs. 6.06/2.49 6.06/2.49 *EVAL(x, y) -> COND_EVAL(&&(>(+(x, y), 0), >(x, 0)), x, y) 6.06/2.49 6.06/2.49 *(x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x[0] >= 0 & [(-1)bso_22] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0])), >=) & [(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x[0] >= 0 & [(-1)bso_22] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *COND_EVAL(TRUE, x, y) -> EVAL(-(x, 1), y) 6.06/2.49 6.06/2.49 *(x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(x[0] + [-1] + y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(x[0] + [-1] + [-1]y[0] >= 0 & x[0] + [-1] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x[0] >= 0 & [1 + (-1)bso_24] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *EVAL(x, y) -> COND_EVAL1(&&(&&(>(+(x, y), 0), >=(0, x)), >(y, 0)), x, y) 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x[2] >= 0 & [(-1)bso_26] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *COND_EVAL1(TRUE, x, y) -> EVAL(x, -(y, 1)) 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x[2] >= 0 & [(-1)bso_28] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *EVAL(x, y) -> COND_EVAL2(&&(&&(>(+(x, y), 0), >=(0, x)), >=(0, y)), x, y) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *COND_EVAL2(TRUE, x, y) -> EVAL(x, y) 6.06/2.49 6.06/2.49 *((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 *((U^Increasing(EVAL(x[5], y[5])), >=) & [bni_31] = 0 & [1 + (-1)bso_32] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 6.06/2.49 6.06/2.49 Using the following integer polynomial ordering the resulting constraints can be solved 6.06/2.49 6.06/2.49 Polynomial interpretation over integers[POLO]: 6.06/2.49 6.06/2.49 POL(TRUE) = 0 6.06/2.49 POL(FALSE) = [2] 6.06/2.49 POL(EVAL(x_1, x_2)) = [-1] + x_1 6.06/2.49 POL(COND_EVAL(x_1, x_2, x_3)) = [-1] + x_2 + [-1]x_1 6.06/2.49 POL(&&(x_1, x_2)) = 0 6.06/2.49 POL(>(x_1, x_2)) = [-1] 6.06/2.49 POL(+(x_1, x_2)) = x_1 + x_2 6.06/2.49 POL(0) = 0 6.06/2.49 POL(-(x_1, x_2)) = x_1 + [-1]x_2 6.06/2.49 POL(1) = [1] 6.06/2.49 POL(COND_EVAL1(x_1, x_2, x_3)) = [-1] + x_2 + [-1]x_1 6.06/2.49 POL(>=(x_1, x_2)) = [-1] 6.06/2.49 POL(COND_EVAL2(x_1, x_2, x_3)) = x_2 + [2]x_1 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_>: 6.06/2.49 6.06/2.49 6.06/2.49 COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]) 6.06/2.49 EVAL(x[4], y[4]) -> COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]) 6.06/2.49 COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]) 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_bound: 6.06/2.49 6.06/2.49 6.06/2.49 EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]) 6.06/2.49 COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]) 6.06/2.49 EVAL(x[4], y[4]) -> COND_EVAL2(&&(&&(>(+(x[4], y[4]), 0), >=(0, x[4])), >=(0, y[4])), x[4], y[4]) 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_>=: 6.06/2.49 6.06/2.49 6.06/2.49 EVAL(x[0], y[0]) -> COND_EVAL(&&(>(+(x[0], y[0]), 0), >(x[0], 0)), x[0], y[0]) 6.06/2.49 EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) 6.06/2.49 COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) 6.06/2.49 6.06/2.49 6.06/2.49 At least the following rules have been oriented under context sensitive arithmetic replacement: 6.06/2.49 6.06/2.49 &&(TRUE, TRUE)^1 <-> TRUE^1 6.06/2.49 FALSE^1 -> &&(TRUE, FALSE)^1 6.06/2.49 FALSE^1 -> &&(FALSE, TRUE)^1 6.06/2.49 FALSE^1 -> &&(FALSE, FALSE)^1 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (6) 6.06/2.49 Complex Obligation (AND) 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (7) 6.06/2.49 Obligation: 6.06/2.49 IDP problem: 6.06/2.49 The following function symbols are pre-defined: 6.06/2.49 <<< 6.06/2.49 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.49 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.49 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.49 / ~ Div: (Integer, Integer) -> Integer 6.06/2.49 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.49 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.49 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.49 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.49 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.49 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.49 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.49 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.49 + ~ Add: (Integer, Integer) -> Integer 6.06/2.49 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.49 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.49 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.49 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.49 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.49 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.49 >>> 6.06/2.49 6.06/2.49 6.06/2.49 The following domains are used: 6.06/2.49 Boolean, Integer 6.06/2.49 6.06/2.49 R is empty. 6.06/2.49 6.06/2.49 The integer pair graph contains the following rules and edges: 6.06/2.49 (0): EVAL(x[0], y[0]) -> COND_EVAL(x[0] + y[0] > 0 && x[0] > 0, x[0], y[0]) 6.06/2.49 (2): EVAL(x[2], y[2]) -> COND_EVAL1(x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0, x[2], y[2]) 6.06/2.49 (3): COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], y[3] - 1) 6.06/2.49 6.06/2.49 (3) -> (0), if (x[3] ->^* x[0] & y[3] - 1 ->^* y[0]) 6.06/2.49 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2]) 6.06/2.49 (2) -> (3), if (x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3]) 6.06/2.49 6.06/2.49 The set Q consists of the following terms: 6.06/2.49 eval(x0, x1) 6.06/2.49 Cond_eval(TRUE, x0, x1) 6.06/2.49 Cond_eval1(TRUE, x0, x1) 6.06/2.49 Cond_eval2(TRUE, x0, x1) 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (8) IDependencyGraphProof (EQUIVALENT) 6.06/2.49 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (9) 6.06/2.49 Obligation: 6.06/2.49 IDP problem: 6.06/2.49 The following function symbols are pre-defined: 6.06/2.49 <<< 6.06/2.49 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.49 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.49 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.49 / ~ Div: (Integer, Integer) -> Integer 6.06/2.49 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.49 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.49 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.49 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.49 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.49 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.49 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.49 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.49 + ~ Add: (Integer, Integer) -> Integer 6.06/2.49 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.49 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.49 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.49 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.49 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.49 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.49 >>> 6.06/2.49 6.06/2.49 6.06/2.49 The following domains are used: 6.06/2.49 Integer, Boolean 6.06/2.49 6.06/2.49 R is empty. 6.06/2.49 6.06/2.49 The integer pair graph contains the following rules and edges: 6.06/2.49 (3): COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], y[3] - 1) 6.06/2.49 (2): EVAL(x[2], y[2]) -> COND_EVAL1(x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0, x[2], y[2]) 6.06/2.49 6.06/2.49 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2]) 6.06/2.49 (2) -> (3), if (x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3]) 6.06/2.49 6.06/2.49 The set Q consists of the following terms: 6.06/2.49 eval(x0, x1) 6.06/2.49 Cond_eval(TRUE, x0, x1) 6.06/2.49 Cond_eval1(TRUE, x0, x1) 6.06/2.49 Cond_eval2(TRUE, x0, x1) 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (10) IDPNonInfProof (SOUND) 6.06/2.49 Used the following options for this NonInfProof: 6.06/2.49 6.06/2.49 IDPGPoloSolver: 6.06/2.49 Range: [(-1,2)] 6.06/2.49 IsNat: false 6.06/2.49 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@60b45b4 6.06/2.49 Constraint Generator: NonInfConstraintGenerator: 6.06/2.49 PathGenerator: MetricPathGenerator: 6.06/2.49 Max Left Steps: 1 6.06/2.49 Max Right Steps: 1 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 The constraints were generated the following way: 6.06/2.49 6.06/2.49 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 6.06/2.49 6.06/2.49 Note that final constraints are written in bold face. 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) the following chains were created: 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)), EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[2]1 & -(y[3], 1)=y[2]1 ==> COND_EVAL1(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL1(TRUE, x[3], y[3])_>=_EVAL(x[3], -(y[3], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> COND_EVAL1(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL1(TRUE, x[2], y[2])_>=_EVAL(x[2], -(y[2], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [bni_13]y[2] + [(-1)bni_13]x[2] >= 0 & [(-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [bni_13]y[2] + [(-1)bni_13]x[2] >= 0 & [(-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [bni_13]y[2] + [(-1)bni_13]x[2] >= 0 & [(-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [bni_13]y[2] + [bni_13]x[2] >= 0 & [(-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) the following chains were created: 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] ==> EVAL(x[2], y[2])_>=_NonInfC & EVAL(x[2], y[2])_>=_COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) & (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> EVAL(x[2], y[2])_>=_NonInfC & EVAL(x[2], y[2])_>=_COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) & (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]y[2] + [(-1)bni_15]x[2] >= 0 & [1 + (-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]y[2] + [(-1)bni_15]x[2] >= 0 & [1 + (-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]y[2] + [(-1)bni_15]x[2] >= 0 & [1 + (-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]y[2] + [bni_15]x[2] >= 0 & [1 + (-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 To summarize, we get the following constraints P__>=_ for the following pairs. 6.06/2.49 6.06/2.49 *COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [bni_13]y[2] + [bni_13]x[2] >= 0 & [(-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]y[2] + [bni_15]x[2] >= 0 & [1 + (-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 6.06/2.49 6.06/2.49 Using the following integer polynomial ordering the resulting constraints can be solved 6.06/2.49 6.06/2.49 Polynomial interpretation over integers[POLO]: 6.06/2.49 6.06/2.49 POL(TRUE) = [1] 6.06/2.49 POL(FALSE) = [3] 6.06/2.49 POL(COND_EVAL1(x_1, x_2, x_3)) = [-1] + x_3 + [-1]x_2 + [-1]x_1 6.06/2.49 POL(EVAL(x_1, x_2)) = [-1] + x_2 + [-1]x_1 6.06/2.49 POL(-(x_1, x_2)) = x_1 + [-1]x_2 6.06/2.49 POL(1) = [1] 6.06/2.49 POL(&&(x_1, x_2)) = [1] 6.06/2.49 POL(>(x_1, x_2)) = [-1] 6.06/2.49 POL(+(x_1, x_2)) = x_1 + x_2 6.06/2.49 POL(0) = 0 6.06/2.49 POL(>=(x_1, x_2)) = [-1] 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_>: 6.06/2.49 6.06/2.49 6.06/2.49 EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_bound: 6.06/2.49 6.06/2.49 6.06/2.49 COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) 6.06/2.49 EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_>=: 6.06/2.49 6.06/2.49 6.06/2.49 COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) 6.06/2.49 6.06/2.49 6.06/2.49 At least the following rules have been oriented under context sensitive arithmetic replacement: 6.06/2.49 6.06/2.49 &&(TRUE, TRUE)^1 <-> TRUE^1 6.06/2.49 FALSE^1 -> &&(TRUE, FALSE)^1 6.06/2.49 FALSE^1 -> &&(FALSE, TRUE)^1 6.06/2.49 FALSE^1 -> &&(FALSE, FALSE)^1 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (11) 6.06/2.49 Obligation: 6.06/2.49 IDP problem: 6.06/2.49 The following function symbols are pre-defined: 6.06/2.49 <<< 6.06/2.49 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.49 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.49 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.49 / ~ Div: (Integer, Integer) -> Integer 6.06/2.49 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.49 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.49 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.49 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.49 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.49 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.49 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.49 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.49 + ~ Add: (Integer, Integer) -> Integer 6.06/2.49 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.49 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.49 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.49 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.49 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.49 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.49 >>> 6.06/2.49 6.06/2.49 6.06/2.49 The following domains are used: 6.06/2.49 Integer 6.06/2.49 6.06/2.49 R is empty. 6.06/2.49 6.06/2.49 The integer pair graph contains the following rules and edges: 6.06/2.49 (3): COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], y[3] - 1) 6.06/2.49 6.06/2.49 6.06/2.49 The set Q consists of the following terms: 6.06/2.49 eval(x0, x1) 6.06/2.49 Cond_eval(TRUE, x0, x1) 6.06/2.49 Cond_eval1(TRUE, x0, x1) 6.06/2.49 Cond_eval2(TRUE, x0, x1) 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (12) IDependencyGraphProof (EQUIVALENT) 6.06/2.49 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (13) 6.06/2.49 TRUE 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (14) 6.06/2.49 Obligation: 6.06/2.49 IDP problem: 6.06/2.49 The following function symbols are pre-defined: 6.06/2.49 <<< 6.06/2.49 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.49 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.49 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.49 / ~ Div: (Integer, Integer) -> Integer 6.06/2.49 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.49 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.49 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.49 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.49 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.49 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.49 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.49 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.49 + ~ Add: (Integer, Integer) -> Integer 6.06/2.49 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.49 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.49 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.49 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.49 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.49 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.49 >>> 6.06/2.49 6.06/2.49 6.06/2.49 The following domains are used: 6.06/2.49 Boolean, Integer 6.06/2.49 6.06/2.49 R is empty. 6.06/2.49 6.06/2.49 The integer pair graph contains the following rules and edges: 6.06/2.49 (2): EVAL(x[2], y[2]) -> COND_EVAL1(x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0, x[2], y[2]) 6.06/2.49 (3): COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], y[3] - 1) 6.06/2.49 (5): COND_EVAL2(TRUE, x[5], y[5]) -> EVAL(x[5], y[5]) 6.06/2.49 6.06/2.49 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2]) 6.06/2.49 (5) -> (2), if (x[5] ->^* x[2] & y[5] ->^* y[2]) 6.06/2.49 (2) -> (3), if (x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3]) 6.06/2.49 6.06/2.49 The set Q consists of the following terms: 6.06/2.49 eval(x0, x1) 6.06/2.49 Cond_eval(TRUE, x0, x1) 6.06/2.49 Cond_eval1(TRUE, x0, x1) 6.06/2.49 Cond_eval2(TRUE, x0, x1) 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (15) IDependencyGraphProof (EQUIVALENT) 6.06/2.49 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (16) 6.06/2.49 Obligation: 6.06/2.49 IDP problem: 6.06/2.49 The following function symbols are pre-defined: 6.06/2.49 <<< 6.06/2.49 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.49 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.49 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.49 / ~ Div: (Integer, Integer) -> Integer 6.06/2.49 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.49 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.49 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.49 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.49 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.49 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.49 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.49 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.49 + ~ Add: (Integer, Integer) -> Integer 6.06/2.49 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.49 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.49 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.49 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.49 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.49 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.49 >>> 6.06/2.49 6.06/2.49 6.06/2.49 The following domains are used: 6.06/2.49 Integer, Boolean 6.06/2.49 6.06/2.49 R is empty. 6.06/2.49 6.06/2.49 The integer pair graph contains the following rules and edges: 6.06/2.49 (3): COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], y[3] - 1) 6.06/2.49 (2): EVAL(x[2], y[2]) -> COND_EVAL1(x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0, x[2], y[2]) 6.06/2.49 6.06/2.49 (3) -> (2), if (x[3] ->^* x[2] & y[3] - 1 ->^* y[2]) 6.06/2.49 (2) -> (3), if (x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0 & x[2] ->^* x[3] & y[2] ->^* y[3]) 6.06/2.49 6.06/2.49 The set Q consists of the following terms: 6.06/2.49 eval(x0, x1) 6.06/2.49 Cond_eval(TRUE, x0, x1) 6.06/2.49 Cond_eval1(TRUE, x0, x1) 6.06/2.49 Cond_eval2(TRUE, x0, x1) 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (17) IDPNonInfProof (SOUND) 6.06/2.49 Used the following options for this NonInfProof: 6.06/2.49 6.06/2.49 IDPGPoloSolver: 6.06/2.49 Range: [(-1,2)] 6.06/2.49 IsNat: false 6.06/2.49 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@60b45b4 6.06/2.49 Constraint Generator: NonInfConstraintGenerator: 6.06/2.49 PathGenerator: MetricPathGenerator: 6.06/2.49 Max Left Steps: 1 6.06/2.49 Max Right Steps: 1 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 The constraints were generated the following way: 6.06/2.49 6.06/2.49 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 6.06/2.49 6.06/2.49 Note that final constraints are written in bold face. 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) the following chains were created: 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)), EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[2]1 & -(y[3], 1)=y[2]1 ==> COND_EVAL1(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL1(TRUE, x[3], y[3])_>=_EVAL(x[3], -(y[3], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> COND_EVAL1(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL1(TRUE, x[2], y[2])_>=_EVAL(x[2], -(y[2], 1)) & (U^Increasing(EVAL(x[3], -(y[3], 1))), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [(2)bni_13]y[2] + [(-1)bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [(2)bni_13]y[2] + [(-1)bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [(2)bni_13]y[2] + [(-1)bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [(2)bni_13]y[2] + [bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 For Pair EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) the following chains were created: 6.06/2.49 *We consider the chain EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]), COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) which results in the following constraint: 6.06/2.49 6.06/2.49 (1) (&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0))=TRUE & x[2]=x[3] & y[2]=y[3] ==> EVAL(x[2], y[2])_>=_NonInfC & EVAL(x[2], y[2])_>=_COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) & (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 6.06/2.49 6.06/2.49 (2) (>(y[2], 0)=TRUE & >(+(x[2], y[2]), 0)=TRUE & >=(0, x[2])=TRUE ==> EVAL(x[2], y[2])_>=_NonInfC & EVAL(x[2], y[2])_>=_COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) & (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=)) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 6.06/2.49 6.06/2.49 (3) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]y[2] + [(-1)bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 6.06/2.49 6.06/2.49 (4) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]y[2] + [(-1)bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 6.06/2.49 6.06/2.49 (5) (y[2] + [-1] >= 0 & x[2] + [-1] + y[2] >= 0 & [-1]x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]y[2] + [(-1)bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 6.06/2.49 6.06/2.49 (6) (y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]y[2] + [bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 To summarize, we get the following constraints P__>=_ for the following pairs. 6.06/2.49 6.06/2.49 *COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(EVAL(x[3], -(y[3], 1))), >=) & [(-2)bni_13 + (-1)Bound*bni_13] + [(2)bni_13]y[2] + [bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 *EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) 6.06/2.49 6.06/2.49 *(y[2] + [-1] >= 0 & [-1]x[2] + [-1] + y[2] >= 0 & x[2] >= 0 ==> (U^Increasing(COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]y[2] + [bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 6.06/2.49 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 6.06/2.49 6.06/2.49 Using the following integer polynomial ordering the resulting constraints can be solved 6.06/2.49 6.06/2.49 Polynomial interpretation over integers[POLO]: 6.06/2.49 6.06/2.49 POL(TRUE) = [1] 6.06/2.49 POL(FALSE) = 0 6.06/2.49 POL(COND_EVAL1(x_1, x_2, x_3)) = [-1] + [2]x_3 + [-1]x_2 + [-1]x_1 6.06/2.49 POL(EVAL(x_1, x_2)) = [-1] + [2]x_2 + [-1]x_1 6.06/2.49 POL(-(x_1, x_2)) = x_1 + [-1]x_2 6.06/2.49 POL(1) = [1] 6.06/2.49 POL(&&(x_1, x_2)) = 0 6.06/2.49 POL(>(x_1, x_2)) = [-1] 6.06/2.49 POL(+(x_1, x_2)) = x_1 + x_2 6.06/2.49 POL(0) = 0 6.06/2.49 POL(>=(x_1, x_2)) = [-1] 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_>: 6.06/2.49 6.06/2.49 6.06/2.49 COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_bound: 6.06/2.49 6.06/2.49 6.06/2.49 COND_EVAL1(TRUE, x[3], y[3]) -> EVAL(x[3], -(y[3], 1)) 6.06/2.49 EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) 6.06/2.49 6.06/2.49 6.06/2.49 The following pairs are in P_>=: 6.06/2.49 6.06/2.49 6.06/2.49 EVAL(x[2], y[2]) -> COND_EVAL1(&&(&&(>(+(x[2], y[2]), 0), >=(0, x[2])), >(y[2], 0)), x[2], y[2]) 6.06/2.49 6.06/2.49 6.06/2.49 At least the following rules have been oriented under context sensitive arithmetic replacement: 6.06/2.49 6.06/2.49 TRUE^1 -> &&(TRUE, TRUE)^1 6.06/2.49 FALSE^1 -> &&(TRUE, FALSE)^1 6.06/2.49 FALSE^1 -> &&(FALSE, TRUE)^1 6.06/2.49 &&(FALSE, FALSE)^1 <-> FALSE^1 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (18) 6.06/2.49 Obligation: 6.06/2.49 IDP problem: 6.06/2.49 The following function symbols are pre-defined: 6.06/2.49 <<< 6.06/2.49 & ~ Bwand: (Integer, Integer) -> Integer 6.06/2.49 >= ~ Ge: (Integer, Integer) -> Boolean 6.06/2.49 | ~ Bwor: (Integer, Integer) -> Integer 6.06/2.49 / ~ Div: (Integer, Integer) -> Integer 6.06/2.49 != ~ Neq: (Integer, Integer) -> Boolean 6.06/2.49 && ~ Land: (Boolean, Boolean) -> Boolean 6.06/2.49 ! ~ Lnot: (Boolean) -> Boolean 6.06/2.49 = ~ Eq: (Integer, Integer) -> Boolean 6.06/2.49 <= ~ Le: (Integer, Integer) -> Boolean 6.06/2.49 ^ ~ Bwxor: (Integer, Integer) -> Integer 6.06/2.49 % ~ Mod: (Integer, Integer) -> Integer 6.06/2.49 > ~ Gt: (Integer, Integer) -> Boolean 6.06/2.49 + ~ Add: (Integer, Integer) -> Integer 6.06/2.49 -1 ~ UnaryMinus: (Integer) -> Integer 6.06/2.49 < ~ Lt: (Integer, Integer) -> Boolean 6.06/2.49 || ~ Lor: (Boolean, Boolean) -> Boolean 6.06/2.49 - ~ Sub: (Integer, Integer) -> Integer 6.06/2.49 ~ ~ Bwnot: (Integer) -> Integer 6.06/2.49 * ~ Mul: (Integer, Integer) -> Integer 6.06/2.49 >>> 6.06/2.49 6.06/2.49 6.06/2.49 The following domains are used: 6.06/2.49 Boolean, Integer 6.06/2.49 6.06/2.49 R is empty. 6.06/2.49 6.06/2.49 The integer pair graph contains the following rules and edges: 6.06/2.49 (2): EVAL(x[2], y[2]) -> COND_EVAL1(x[2] + y[2] > 0 && 0 >= x[2] && y[2] > 0, x[2], y[2]) 6.06/2.49 6.06/2.49 6.06/2.49 The set Q consists of the following terms: 6.06/2.49 eval(x0, x1) 6.06/2.49 Cond_eval(TRUE, x0, x1) 6.06/2.49 Cond_eval1(TRUE, x0, x1) 6.06/2.49 Cond_eval2(TRUE, x0, x1) 6.06/2.49 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (19) IDependencyGraphProof (EQUIVALENT) 6.06/2.49 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 6.06/2.49 ---------------------------------------- 6.06/2.49 6.06/2.49 (20) 6.06/2.49 TRUE 6.29/2.51 EOF