0.00/0.26 YES 0.00/0.26 0.00/0.26 DP problem for innermost termination. 0.00/0.26 P = 0.00/0.26 eval#(x, y) -> eval#(x, y) [x + y > 0 && 0 >= x && 0 >= y] 0.00/0.26 eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && 0 >= I0 && I1 > 0] 0.00/0.26 eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I2 > 0] 0.00/0.26 R = 0.00/0.26 eval(x, y) -> eval(x, y) [x + y > 0 && 0 >= x && 0 >= y] 0.00/0.26 eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && 0 >= I0 && I1 > 0] 0.00/0.26 eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I2 > 0] 0.00/0.26 0.00/0.26 The dependency graph for this problem is: 0.00/0.26 0 -> 0.00/0.26 1 -> 1 0.00/0.26 2 -> 1, 2 0.00/0.26 Where: 0.00/0.26 0) eval#(x, y) -> eval#(x, y) [x + y > 0 && 0 >= x && 0 >= y] 0.00/0.26 1) eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && 0 >= I0 && I1 > 0] 0.00/0.26 2) eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I2 > 0] 0.00/0.26 0.00/0.26 We have the following SCCs. 0.00/0.26 { 2 } 0.00/0.26 { 1 } 0.00/0.26 0.00/0.26 DP problem for innermost termination. 0.00/0.26 P = 0.00/0.26 eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && 0 >= I0 && I1 > 0] 0.00/0.26 R = 0.00/0.26 eval(x, y) -> eval(x, y) [x + y > 0 && 0 >= x && 0 >= y] 0.00/0.26 eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && 0 >= I0 && I1 > 0] 0.00/0.26 eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I2 > 0] 0.00/0.26 0.00/0.26 We use the reverse value criterion with the projection function NU: 0.00/0.26 NU[eval#(z1,z2)] = z1 + z2 + -1 * 0 0.00/0.26 0.00/0.26 This gives the following inequalities: 0.00/0.26 I0 + I1 > 0 && 0 >= I0 && I1 > 0 ==> I0 + I1 + -1 * 0 > I0 + (I1 - 1) + -1 * 0 with I0 + I1 + -1 * 0 >= 0 0.00/0.26 0.00/0.26 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.26 0.00/0.26 DP problem for innermost termination. 0.00/0.26 P = 0.00/0.26 eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I2 > 0] 0.00/0.26 R = 0.00/0.26 eval(x, y) -> eval(x, y) [x + y > 0 && 0 >= x && 0 >= y] 0.00/0.26 eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && 0 >= I0 && I1 > 0] 0.00/0.26 eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I2 > 0] 0.00/0.26 0.00/0.26 We use the reverse value criterion with the projection function NU: 0.00/0.26 NU[eval#(z1,z2)] = z1 0.00/0.26 0.00/0.26 This gives the following inequalities: 0.00/0.26 I2 + I3 > 0 && I2 > 0 ==> I2 > I2 - 1 with I2 >= 0 0.00/0.26 0.00/0.26 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.24 EOF