3.78/1.79 YES 3.81/1.80 proof of /export/starexec/sandbox2/benchmark/theBenchmark.itrs 3.81/1.80 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.81/1.80 3.81/1.80 3.81/1.80 Termination of the given ITRS could be proven: 3.81/1.80 3.81/1.80 (0) ITRS 3.81/1.80 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 3.81/1.80 (2) IDP 3.81/1.80 (3) UsableRulesProof [EQUIVALENT, 0 ms] 3.81/1.80 (4) IDP 3.81/1.80 (5) IDPNonInfProof [SOUND, 148 ms] 3.81/1.80 (6) IDP 3.81/1.80 (7) IDependencyGraphProof [EQUIVALENT, 0 ms] 3.81/1.80 (8) TRUE 3.81/1.80 3.81/1.80 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (0) 3.81/1.80 Obligation: 3.81/1.80 ITRS problem: 3.81/1.80 3.81/1.80 The following function symbols are pre-defined: 3.81/1.80 <<< 3.81/1.80 & ~ Bwand: (Integer, Integer) -> Integer 3.81/1.80 >= ~ Ge: (Integer, Integer) -> Boolean 3.81/1.80 | ~ Bwor: (Integer, Integer) -> Integer 3.81/1.80 / ~ Div: (Integer, Integer) -> Integer 3.81/1.80 != ~ Neq: (Integer, Integer) -> Boolean 3.81/1.80 && ~ Land: (Boolean, Boolean) -> Boolean 3.81/1.80 ! ~ Lnot: (Boolean) -> Boolean 3.81/1.80 = ~ Eq: (Integer, Integer) -> Boolean 3.81/1.80 <= ~ Le: (Integer, Integer) -> Boolean 3.81/1.80 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.81/1.80 % ~ Mod: (Integer, Integer) -> Integer 3.81/1.80 > ~ Gt: (Integer, Integer) -> Boolean 3.81/1.80 + ~ Add: (Integer, Integer) -> Integer 3.81/1.80 -1 ~ UnaryMinus: (Integer) -> Integer 3.81/1.80 < ~ Lt: (Integer, Integer) -> Boolean 3.81/1.80 || ~ Lor: (Boolean, Boolean) -> Boolean 3.81/1.80 - ~ Sub: (Integer, Integer) -> Integer 3.81/1.80 ~ ~ Bwnot: (Integer) -> Integer 3.81/1.80 * ~ Mul: (Integer, Integer) -> Integer 3.81/1.80 >>> 3.81/1.80 3.81/1.80 The TRS R consists of the following rules: 3.81/1.80 eval(x, y) -> Cond_eval(x > y, x, y) 3.81/1.80 Cond_eval(TRUE, x, y) -> eval(x - 1, y) 3.81/1.80 The set Q consists of the following terms: 3.81/1.80 eval(x0, x1) 3.81/1.80 Cond_eval(TRUE, x0, x1) 3.81/1.80 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (1) ITRStoIDPProof (EQUIVALENT) 3.81/1.80 Added dependency pairs 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (2) 3.81/1.80 Obligation: 3.81/1.80 IDP problem: 3.81/1.80 The following function symbols are pre-defined: 3.81/1.80 <<< 3.81/1.80 & ~ Bwand: (Integer, Integer) -> Integer 3.81/1.80 >= ~ Ge: (Integer, Integer) -> Boolean 3.81/1.80 | ~ Bwor: (Integer, Integer) -> Integer 3.81/1.80 / ~ Div: (Integer, Integer) -> Integer 3.81/1.80 != ~ Neq: (Integer, Integer) -> Boolean 3.81/1.80 && ~ Land: (Boolean, Boolean) -> Boolean 3.81/1.80 ! ~ Lnot: (Boolean) -> Boolean 3.81/1.80 = ~ Eq: (Integer, Integer) -> Boolean 3.81/1.80 <= ~ Le: (Integer, Integer) -> Boolean 3.81/1.80 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.81/1.80 % ~ Mod: (Integer, Integer) -> Integer 3.81/1.80 > ~ Gt: (Integer, Integer) -> Boolean 3.81/1.80 + ~ Add: (Integer, Integer) -> Integer 3.81/1.80 -1 ~ UnaryMinus: (Integer) -> Integer 3.81/1.80 < ~ Lt: (Integer, Integer) -> Boolean 3.81/1.80 || ~ Lor: (Boolean, Boolean) -> Boolean 3.81/1.80 - ~ Sub: (Integer, Integer) -> Integer 3.81/1.80 ~ ~ Bwnot: (Integer) -> Integer 3.81/1.80 * ~ Mul: (Integer, Integer) -> Integer 3.81/1.80 >>> 3.81/1.80 3.81/1.80 3.81/1.80 The following domains are used: 3.81/1.80 Integer 3.81/1.80 3.81/1.80 The ITRS R consists of the following rules: 3.81/1.80 eval(x, y) -> Cond_eval(x > y, x, y) 3.81/1.80 Cond_eval(TRUE, x, y) -> eval(x - 1, y) 3.81/1.80 3.81/1.80 The integer pair graph contains the following rules and edges: 3.81/1.80 (0): EVAL(x[0], y[0]) -> COND_EVAL(x[0] > y[0], x[0], y[0]) 3.81/1.80 (1): COND_EVAL(TRUE, x[1], y[1]) -> EVAL(x[1] - 1, y[1]) 3.81/1.80 3.81/1.80 (0) -> (1), if (x[0] > y[0] & x[0] ->^* x[1] & y[0] ->^* y[1]) 3.81/1.80 (1) -> (0), if (x[1] - 1 ->^* x[0] & y[1] ->^* y[0]) 3.81/1.80 3.81/1.80 The set Q consists of the following terms: 3.81/1.80 eval(x0, x1) 3.81/1.80 Cond_eval(TRUE, x0, x1) 3.81/1.80 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (3) UsableRulesProof (EQUIVALENT) 3.81/1.80 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (4) 3.81/1.80 Obligation: 3.81/1.80 IDP problem: 3.81/1.80 The following function symbols are pre-defined: 3.81/1.80 <<< 3.81/1.80 & ~ Bwand: (Integer, Integer) -> Integer 3.81/1.80 >= ~ Ge: (Integer, Integer) -> Boolean 3.81/1.80 | ~ Bwor: (Integer, Integer) -> Integer 3.81/1.80 / ~ Div: (Integer, Integer) -> Integer 3.81/1.80 != ~ Neq: (Integer, Integer) -> Boolean 3.81/1.80 && ~ Land: (Boolean, Boolean) -> Boolean 3.81/1.80 ! ~ Lnot: (Boolean) -> Boolean 3.81/1.80 = ~ Eq: (Integer, Integer) -> Boolean 3.81/1.80 <= ~ Le: (Integer, Integer) -> Boolean 3.81/1.80 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.81/1.80 % ~ Mod: (Integer, Integer) -> Integer 3.81/1.80 > ~ Gt: (Integer, Integer) -> Boolean 3.81/1.80 + ~ Add: (Integer, Integer) -> Integer 3.81/1.80 -1 ~ UnaryMinus: (Integer) -> Integer 3.81/1.80 < ~ Lt: (Integer, Integer) -> Boolean 3.81/1.80 || ~ Lor: (Boolean, Boolean) -> Boolean 3.81/1.80 - ~ Sub: (Integer, Integer) -> Integer 3.81/1.80 ~ ~ Bwnot: (Integer) -> Integer 3.81/1.80 * ~ Mul: (Integer, Integer) -> Integer 3.81/1.80 >>> 3.81/1.80 3.81/1.80 3.81/1.80 The following domains are used: 3.81/1.80 Integer 3.81/1.80 3.81/1.80 R is empty. 3.81/1.80 3.81/1.80 The integer pair graph contains the following rules and edges: 3.81/1.80 (0): EVAL(x[0], y[0]) -> COND_EVAL(x[0] > y[0], x[0], y[0]) 3.81/1.80 (1): COND_EVAL(TRUE, x[1], y[1]) -> EVAL(x[1] - 1, y[1]) 3.81/1.80 3.81/1.80 (0) -> (1), if (x[0] > y[0] & x[0] ->^* x[1] & y[0] ->^* y[1]) 3.81/1.80 (1) -> (0), if (x[1] - 1 ->^* x[0] & y[1] ->^* y[0]) 3.81/1.80 3.81/1.80 The set Q consists of the following terms: 3.81/1.80 eval(x0, x1) 3.81/1.80 Cond_eval(TRUE, x0, x1) 3.81/1.80 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (5) IDPNonInfProof (SOUND) 3.81/1.80 Used the following options for this NonInfProof: 3.81/1.80 3.81/1.80 IDPGPoloSolver: 3.81/1.80 Range: [(-1,2)] 3.81/1.80 IsNat: false 3.81/1.80 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@65d89150 3.81/1.80 Constraint Generator: NonInfConstraintGenerator: 3.81/1.80 PathGenerator: MetricPathGenerator: 3.81/1.80 Max Left Steps: 1 3.81/1.80 Max Right Steps: 1 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 The constraints were generated the following way: 3.81/1.80 3.81/1.80 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 3.81/1.80 3.81/1.80 Note that final constraints are written in bold face. 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 For Pair EVAL(x, y) -> COND_EVAL(>(x, y), x, y) the following chains were created: 3.81/1.80 *We consider the chain EVAL(x[0], y[0]) -> COND_EVAL(>(x[0], y[0]), x[0], y[0]), COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]) which results in the following constraint: 3.81/1.80 3.81/1.80 (1) (>(x[0], y[0])=TRUE & x[0]=x[1] & y[0]=y[1] ==> EVAL(x[0], y[0])_>=_NonInfC & EVAL(x[0], y[0])_>=_COND_EVAL(>(x[0], y[0]), x[0], y[0]) & (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=)) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (1) using rule (IV) which results in the following new constraint: 3.81/1.80 3.81/1.80 (2) (>(x[0], y[0])=TRUE ==> EVAL(x[0], y[0])_>=_NonInfC & EVAL(x[0], y[0])_>=_COND_EVAL(>(x[0], y[0]), x[0], y[0]) & (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=)) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.81/1.80 3.81/1.80 (3) (x[0] + [-1] + [-1]y[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]y[0] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.81/1.80 3.81/1.80 (4) (x[0] + [-1] + [-1]y[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]y[0] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.81/1.80 3.81/1.80 (5) (x[0] + [-1] + [-1]y[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]y[0] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 3.81/1.80 3.81/1.80 (6) (x[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)Bound*bni_11] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 3.81/1.80 3.81/1.80 (7) (x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)Bound*bni_11] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 (8) (x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)Bound*bni_11] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 For Pair COND_EVAL(TRUE, x, y) -> EVAL(-(x, 1), y) the following chains were created: 3.81/1.80 *We consider the chain EVAL(x[0], y[0]) -> COND_EVAL(>(x[0], y[0]), x[0], y[0]), COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]), EVAL(x[0], y[0]) -> COND_EVAL(>(x[0], y[0]), x[0], y[0]) which results in the following constraint: 3.81/1.80 3.81/1.80 (1) (>(x[0], y[0])=TRUE & x[0]=x[1] & y[0]=y[1] & -(x[1], 1)=x[0]1 & y[1]=y[0]1 ==> COND_EVAL(TRUE, x[1], y[1])_>=_NonInfC & COND_EVAL(TRUE, x[1], y[1])_>=_EVAL(-(x[1], 1), y[1]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 3.81/1.80 3.81/1.80 (2) (>(x[0], y[0])=TRUE ==> COND_EVAL(TRUE, x[0], y[0])_>=_NonInfC & COND_EVAL(TRUE, x[0], y[0])_>=_EVAL(-(x[0], 1), y[0]) & (U^Increasing(EVAL(-(x[1], 1), y[1])), >=)) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.81/1.80 3.81/1.80 (3) (x[0] + [-1] + [-1]y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]y[0] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.81/1.80 3.81/1.80 (4) (x[0] + [-1] + [-1]y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]y[0] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.81/1.80 3.81/1.80 (5) (x[0] + [-1] + [-1]y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]y[0] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 3.81/1.80 3.81/1.80 (6) (x[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 3.81/1.80 3.81/1.80 (7) (x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 (8) (x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 To summarize, we get the following constraints P__>=_ for the following pairs. 3.81/1.80 3.81/1.80 *EVAL(x, y) -> COND_EVAL(>(x, y), x, y) 3.81/1.80 3.81/1.80 *(x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)Bound*bni_11] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 *(x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(COND_EVAL(>(x[0], y[0]), x[0], y[0])), >=) & [(-1)Bound*bni_11] + [bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 *COND_EVAL(TRUE, x, y) -> EVAL(-(x, 1), y) 3.81/1.80 3.81/1.80 *(x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 *(x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(EVAL(-(x[1], 1), y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]x[0] >= 0 & [1 + (-1)bso_14] >= 0) 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 3.81/1.80 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 3.81/1.80 3.81/1.80 Using the following integer polynomial ordering the resulting constraints can be solved 3.81/1.80 3.81/1.80 Polynomial interpretation over integers[POLO]: 3.81/1.80 3.81/1.80 POL(TRUE) = 0 3.81/1.80 POL(FALSE) = 0 3.81/1.80 POL(EVAL(x_1, x_2)) = [-1] + [-1]x_2 + x_1 3.81/1.80 POL(COND_EVAL(x_1, x_2, x_3)) = [-1] + [-1]x_3 + x_2 3.81/1.80 POL(>(x_1, x_2)) = [-1] 3.81/1.80 POL(-(x_1, x_2)) = x_1 + [-1]x_2 3.81/1.80 POL(1) = [1] 3.81/1.80 3.81/1.80 3.81/1.80 The following pairs are in P_>: 3.81/1.80 3.81/1.80 3.81/1.80 COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]) 3.81/1.80 3.81/1.80 3.81/1.80 The following pairs are in P_bound: 3.81/1.80 3.81/1.80 3.81/1.80 EVAL(x[0], y[0]) -> COND_EVAL(>(x[0], y[0]), x[0], y[0]) 3.81/1.80 COND_EVAL(TRUE, x[1], y[1]) -> EVAL(-(x[1], 1), y[1]) 3.81/1.80 3.81/1.80 3.81/1.80 The following pairs are in P_>=: 3.81/1.80 3.81/1.80 3.81/1.80 EVAL(x[0], y[0]) -> COND_EVAL(>(x[0], y[0]), x[0], y[0]) 3.81/1.80 3.81/1.80 3.81/1.80 There are no usable rules. 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (6) 3.81/1.80 Obligation: 3.81/1.80 IDP problem: 3.81/1.80 The following function symbols are pre-defined: 3.81/1.80 <<< 3.81/1.80 & ~ Bwand: (Integer, Integer) -> Integer 3.81/1.80 >= ~ Ge: (Integer, Integer) -> Boolean 3.81/1.80 | ~ Bwor: (Integer, Integer) -> Integer 3.81/1.80 / ~ Div: (Integer, Integer) -> Integer 3.81/1.80 != ~ Neq: (Integer, Integer) -> Boolean 3.81/1.80 && ~ Land: (Boolean, Boolean) -> Boolean 3.81/1.80 ! ~ Lnot: (Boolean) -> Boolean 3.81/1.80 = ~ Eq: (Integer, Integer) -> Boolean 3.81/1.80 <= ~ Le: (Integer, Integer) -> Boolean 3.81/1.80 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.81/1.80 % ~ Mod: (Integer, Integer) -> Integer 3.81/1.80 > ~ Gt: (Integer, Integer) -> Boolean 3.81/1.80 + ~ Add: (Integer, Integer) -> Integer 3.81/1.80 -1 ~ UnaryMinus: (Integer) -> Integer 3.81/1.80 < ~ Lt: (Integer, Integer) -> Boolean 3.81/1.80 || ~ Lor: (Boolean, Boolean) -> Boolean 3.81/1.80 - ~ Sub: (Integer, Integer) -> Integer 3.81/1.80 ~ ~ Bwnot: (Integer) -> Integer 3.81/1.80 * ~ Mul: (Integer, Integer) -> Integer 3.81/1.80 >>> 3.81/1.80 3.81/1.80 3.81/1.80 The following domains are used: 3.81/1.80 Integer 3.81/1.80 3.81/1.80 R is empty. 3.81/1.80 3.81/1.80 The integer pair graph contains the following rules and edges: 3.81/1.80 (0): EVAL(x[0], y[0]) -> COND_EVAL(x[0] > y[0], x[0], y[0]) 3.81/1.80 3.81/1.80 3.81/1.80 The set Q consists of the following terms: 3.81/1.80 eval(x0, x1) 3.81/1.80 Cond_eval(TRUE, x0, x1) 3.81/1.80 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (7) IDependencyGraphProof (EQUIVALENT) 3.81/1.80 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 3.81/1.80 ---------------------------------------- 3.81/1.80 3.81/1.80 (8) 3.81/1.80 TRUE 3.84/1.82 EOF