3.62/1.82 YES 3.62/1.83 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 3.62/1.83 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.62/1.83 3.62/1.83 3.62/1.83 Termination of the given ITRS could be proven: 3.62/1.83 3.62/1.83 (0) ITRS 3.62/1.83 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 3.62/1.83 (2) IDP 3.62/1.83 (3) IDependencyGraphProof [EQUIVALENT, 0 ms] 3.62/1.83 (4) IDP 3.62/1.83 (5) UsableRulesProof [EQUIVALENT, 0 ms] 3.62/1.83 (6) IDP 3.62/1.83 (7) IDPNonInfProof [SOUND, 157 ms] 3.62/1.83 (8) IDP 3.62/1.83 (9) IDependencyGraphProof [EQUIVALENT, 0 ms] 3.62/1.83 (10) TRUE 3.62/1.83 3.62/1.83 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (0) 3.62/1.83 Obligation: 3.62/1.83 ITRS problem: 3.62/1.83 3.62/1.83 The following function symbols are pre-defined: 3.62/1.83 <<< 3.62/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.62/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.62/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.62/1.83 / ~ Div: (Integer, Integer) -> Integer 3.62/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.62/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.62/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.62/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.62/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.62/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.62/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.62/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.62/1.83 + ~ Add: (Integer, Integer) -> Integer 3.62/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.62/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.62/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.62/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.62/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.62/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.62/1.83 >>> 3.62/1.83 3.62/1.83 The TRS R consists of the following rules: 3.62/1.83 sumto(x, y) -> Cond_sumto(x > y, x, y) 3.62/1.83 Cond_sumto(TRUE, x, y) -> wrap(0) 3.62/1.83 sumto(x, y) -> Cond_sumto1(y >= x, x, y) 3.62/1.83 Cond_sumto1(TRUE, x, y) -> if(sumto(x + 1, y), x, y) 3.62/1.83 if(wrap(z), x, y) -> wrap(x + z) 3.62/1.83 The set Q consists of the following terms: 3.62/1.83 sumto(x0, x1) 3.62/1.83 Cond_sumto(TRUE, x0, x1) 3.62/1.83 Cond_sumto1(TRUE, x0, x1) 3.62/1.83 if(wrap(x0), x1, x2) 3.62/1.83 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (1) ITRStoIDPProof (EQUIVALENT) 3.62/1.83 Added dependency pairs 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (2) 3.62/1.83 Obligation: 3.62/1.83 IDP problem: 3.62/1.83 The following function symbols are pre-defined: 3.62/1.83 <<< 3.62/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.62/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.62/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.62/1.83 / ~ Div: (Integer, Integer) -> Integer 3.62/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.62/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.62/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.62/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.62/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.62/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.62/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.62/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.62/1.83 + ~ Add: (Integer, Integer) -> Integer 3.62/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.62/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.62/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.62/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.62/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.62/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.62/1.83 >>> 3.62/1.83 3.62/1.83 3.62/1.83 The following domains are used: 3.62/1.83 Integer 3.62/1.83 3.62/1.83 The ITRS R consists of the following rules: 3.62/1.83 sumto(x, y) -> Cond_sumto(x > y, x, y) 3.62/1.83 Cond_sumto(TRUE, x, y) -> wrap(0) 3.62/1.83 sumto(x, y) -> Cond_sumto1(y >= x, x, y) 3.62/1.83 Cond_sumto1(TRUE, x, y) -> if(sumto(x + 1, y), x, y) 3.62/1.83 if(wrap(z), x, y) -> wrap(x + z) 3.62/1.83 3.62/1.83 The integer pair graph contains the following rules and edges: 3.62/1.83 (0): SUMTO(x[0], y[0]) -> COND_SUMTO(x[0] > y[0], x[0], y[0]) 3.62/1.83 (1): SUMTO(x[1], y[1]) -> COND_SUMTO1(y[1] >= x[1], x[1], y[1]) 3.62/1.83 (2): COND_SUMTO1(TRUE, x[2], y[2]) -> IF(sumto(x[2] + 1, y[2]), x[2], y[2]) 3.62/1.83 (3): COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(x[3] + 1, y[3]) 3.62/1.83 3.62/1.83 (1) -> (2), if (y[1] >= x[1] & x[1] ->^* x[2] & y[1] ->^* y[2]) 3.62/1.83 (1) -> (3), if (y[1] >= x[1] & x[1] ->^* x[3] & y[1] ->^* y[3]) 3.62/1.83 (3) -> (0), if (x[3] + 1 ->^* x[0] & y[3] ->^* y[0]) 3.62/1.83 (3) -> (1), if (x[3] + 1 ->^* x[1] & y[3] ->^* y[1]) 3.62/1.83 3.62/1.83 The set Q consists of the following terms: 3.62/1.83 sumto(x0, x1) 3.62/1.83 Cond_sumto(TRUE, x0, x1) 3.62/1.83 Cond_sumto1(TRUE, x0, x1) 3.62/1.83 if(wrap(x0), x1, x2) 3.62/1.83 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (3) IDependencyGraphProof (EQUIVALENT) 3.62/1.83 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (4) 3.62/1.83 Obligation: 3.62/1.83 IDP problem: 3.62/1.83 The following function symbols are pre-defined: 3.62/1.83 <<< 3.62/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.62/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.62/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.62/1.83 / ~ Div: (Integer, Integer) -> Integer 3.62/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.62/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.62/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.62/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.62/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.62/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.62/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.62/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.62/1.83 + ~ Add: (Integer, Integer) -> Integer 3.62/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.62/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.62/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.62/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.62/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.62/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.62/1.83 >>> 3.62/1.83 3.62/1.83 3.62/1.83 The following domains are used: 3.62/1.83 Integer 3.62/1.83 3.62/1.83 The ITRS R consists of the following rules: 3.62/1.83 sumto(x, y) -> Cond_sumto(x > y, x, y) 3.62/1.83 Cond_sumto(TRUE, x, y) -> wrap(0) 3.62/1.83 sumto(x, y) -> Cond_sumto1(y >= x, x, y) 3.62/1.83 Cond_sumto1(TRUE, x, y) -> if(sumto(x + 1, y), x, y) 3.62/1.83 if(wrap(z), x, y) -> wrap(x + z) 3.62/1.83 3.62/1.83 The integer pair graph contains the following rules and edges: 3.62/1.83 (3): COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(x[3] + 1, y[3]) 3.62/1.83 (1): SUMTO(x[1], y[1]) -> COND_SUMTO1(y[1] >= x[1], x[1], y[1]) 3.62/1.83 3.62/1.83 (3) -> (1), if (x[3] + 1 ->^* x[1] & y[3] ->^* y[1]) 3.62/1.83 (1) -> (3), if (y[1] >= x[1] & x[1] ->^* x[3] & y[1] ->^* y[3]) 3.62/1.83 3.62/1.83 The set Q consists of the following terms: 3.62/1.83 sumto(x0, x1) 3.62/1.83 Cond_sumto(TRUE, x0, x1) 3.62/1.83 Cond_sumto1(TRUE, x0, x1) 3.62/1.83 if(wrap(x0), x1, x2) 3.62/1.83 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (5) UsableRulesProof (EQUIVALENT) 3.62/1.83 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (6) 3.62/1.83 Obligation: 3.62/1.83 IDP problem: 3.62/1.83 The following function symbols are pre-defined: 3.62/1.83 <<< 3.62/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.62/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.62/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.62/1.83 / ~ Div: (Integer, Integer) -> Integer 3.62/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.62/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.62/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.62/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.62/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.62/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.62/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.62/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.62/1.83 + ~ Add: (Integer, Integer) -> Integer 3.62/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.62/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.62/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.62/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.62/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.62/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.62/1.83 >>> 3.62/1.83 3.62/1.83 3.62/1.83 The following domains are used: 3.62/1.83 Integer 3.62/1.83 3.62/1.83 R is empty. 3.62/1.83 3.62/1.83 The integer pair graph contains the following rules and edges: 3.62/1.83 (3): COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(x[3] + 1, y[3]) 3.62/1.83 (1): SUMTO(x[1], y[1]) -> COND_SUMTO1(y[1] >= x[1], x[1], y[1]) 3.62/1.83 3.62/1.83 (3) -> (1), if (x[3] + 1 ->^* x[1] & y[3] ->^* y[1]) 3.62/1.83 (1) -> (3), if (y[1] >= x[1] & x[1] ->^* x[3] & y[1] ->^* y[3]) 3.62/1.83 3.62/1.83 The set Q consists of the following terms: 3.62/1.83 sumto(x0, x1) 3.62/1.83 Cond_sumto(TRUE, x0, x1) 3.62/1.83 Cond_sumto1(TRUE, x0, x1) 3.62/1.83 if(wrap(x0), x1, x2) 3.62/1.83 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (7) IDPNonInfProof (SOUND) 3.62/1.83 Used the following options for this NonInfProof: 3.62/1.83 3.62/1.83 IDPGPoloSolver: 3.62/1.83 Range: [(-1,2)] 3.62/1.83 IsNat: false 3.62/1.83 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@7316c6a 3.62/1.83 Constraint Generator: NonInfConstraintGenerator: 3.62/1.83 PathGenerator: MetricPathGenerator: 3.62/1.83 Max Left Steps: 1 3.62/1.83 Max Right Steps: 1 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 The constraints were generated the following way: 3.62/1.83 3.62/1.83 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 3.62/1.83 3.62/1.83 Note that final constraints are written in bold face. 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 For Pair COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(+(x[3], 1), y[3]) the following chains were created: 3.62/1.83 *We consider the chain SUMTO(x[1], y[1]) -> COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]), COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(+(x[3], 1), y[3]), SUMTO(x[1], y[1]) -> COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]) which results in the following constraint: 3.62/1.83 3.62/1.83 (1) (>=(y[1], x[1])=TRUE & x[1]=x[3] & y[1]=y[3] & +(x[3], 1)=x[1]1 & y[3]=y[1]1 ==> COND_SUMTO1(TRUE, x[3], y[3])_>=_NonInfC & COND_SUMTO1(TRUE, x[3], y[3])_>=_SUMTO(+(x[3], 1), y[3]) & (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=)) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 3.62/1.83 3.62/1.83 (2) (>=(y[1], x[1])=TRUE ==> COND_SUMTO1(TRUE, x[1], y[1])_>=_NonInfC & COND_SUMTO1(TRUE, x[1], y[1])_>=_SUMTO(+(x[1], 1), y[1]) & (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=)) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.62/1.83 3.62/1.83 (3) (y[1] + [-1]x[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] + [(-1)bni_11]x[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.62/1.83 3.62/1.83 (4) (y[1] + [-1]x[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] + [(-1)bni_11]x[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.62/1.83 3.62/1.83 (5) (y[1] + [-1]x[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] + [(-1)bni_11]x[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 3.62/1.83 3.62/1.83 (6) (y[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 3.62/1.83 3.62/1.83 (7) (y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 (8) (y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 For Pair SUMTO(x[1], y[1]) -> COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]) the following chains were created: 3.62/1.83 *We consider the chain SUMTO(x[1], y[1]) -> COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]), COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(+(x[3], 1), y[3]) which results in the following constraint: 3.62/1.83 3.62/1.83 (1) (>=(y[1], x[1])=TRUE & x[1]=x[3] & y[1]=y[3] ==> SUMTO(x[1], y[1])_>=_NonInfC & SUMTO(x[1], y[1])_>=_COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]) & (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=)) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (1) using rule (IV) which results in the following new constraint: 3.62/1.83 3.62/1.83 (2) (>=(y[1], x[1])=TRUE ==> SUMTO(x[1], y[1])_>=_NonInfC & SUMTO(x[1], y[1])_>=_COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]) & (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=)) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.62/1.83 3.62/1.83 (3) (y[1] + [-1]x[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] + [(-1)bni_13]x[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.62/1.83 3.62/1.83 (4) (y[1] + [-1]x[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] + [(-1)bni_13]x[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.62/1.83 3.62/1.83 (5) (y[1] + [-1]x[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] + [(-1)bni_13]x[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 3.62/1.83 3.62/1.83 (6) (y[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 3.62/1.83 3.62/1.83 (7) (y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 (8) (y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 To summarize, we get the following constraints P__>=_ for the following pairs. 3.62/1.83 3.62/1.83 *COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(+(x[3], 1), y[3]) 3.62/1.83 3.62/1.83 *(y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 *(y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(SUMTO(+(x[3], 1), y[3])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]y[1] >= 0 & [(-1)bso_12] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 *SUMTO(x[1], y[1]) -> COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]) 3.62/1.83 3.62/1.83 *(y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 *(y[1] >= 0 & x[1] >= 0 ==> (U^Increasing(COND_SUMTO1(>=(y[1], x[1]), x[1], y[1])), >=) & [(-1)Bound*bni_13] + [bni_13]y[1] >= 0 & [1 + (-1)bso_14] >= 0) 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 3.62/1.83 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 3.62/1.83 3.62/1.83 Using the following integer polynomial ordering the resulting constraints can be solved 3.62/1.83 3.62/1.83 Polynomial interpretation over integers[POLO]: 3.62/1.83 3.62/1.83 POL(TRUE) = 0 3.62/1.83 POL(FALSE) = 0 3.62/1.83 POL(COND_SUMTO1(x_1, x_2, x_3)) = [-1] + x_3 + [-1]x_2 3.62/1.83 POL(SUMTO(x_1, x_2)) = x_2 + [-1]x_1 3.62/1.83 POL(+(x_1, x_2)) = x_1 + x_2 3.62/1.83 POL(1) = [1] 3.62/1.83 POL(>=(x_1, x_2)) = [-1] 3.62/1.83 3.62/1.83 3.62/1.83 The following pairs are in P_>: 3.62/1.83 3.62/1.83 3.62/1.83 SUMTO(x[1], y[1]) -> COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]) 3.62/1.83 3.62/1.83 3.62/1.83 The following pairs are in P_bound: 3.62/1.83 3.62/1.83 3.62/1.83 COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(+(x[3], 1), y[3]) 3.62/1.83 SUMTO(x[1], y[1]) -> COND_SUMTO1(>=(y[1], x[1]), x[1], y[1]) 3.62/1.83 3.62/1.83 3.62/1.83 The following pairs are in P_>=: 3.62/1.83 3.62/1.83 3.62/1.83 COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(+(x[3], 1), y[3]) 3.62/1.83 3.62/1.83 3.62/1.83 There are no usable rules. 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (8) 3.62/1.83 Obligation: 3.62/1.83 IDP problem: 3.62/1.83 The following function symbols are pre-defined: 3.62/1.83 <<< 3.62/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.62/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.62/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.62/1.83 / ~ Div: (Integer, Integer) -> Integer 3.62/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.62/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.62/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.62/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.62/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.62/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.62/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.62/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.62/1.83 + ~ Add: (Integer, Integer) -> Integer 3.62/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.62/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.62/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.62/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.62/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.62/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.62/1.83 >>> 3.62/1.83 3.62/1.83 3.62/1.83 The following domains are used: 3.62/1.83 Integer 3.62/1.83 3.62/1.83 R is empty. 3.62/1.83 3.62/1.83 The integer pair graph contains the following rules and edges: 3.62/1.83 (3): COND_SUMTO1(TRUE, x[3], y[3]) -> SUMTO(x[3] + 1, y[3]) 3.62/1.83 3.62/1.83 3.62/1.83 The set Q consists of the following terms: 3.62/1.83 sumto(x0, x1) 3.62/1.83 Cond_sumto(TRUE, x0, x1) 3.62/1.83 Cond_sumto1(TRUE, x0, x1) 3.62/1.83 if(wrap(x0), x1, x2) 3.62/1.83 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (9) IDependencyGraphProof (EQUIVALENT) 3.62/1.83 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 3.62/1.83 ---------------------------------------- 3.62/1.83 3.62/1.83 (10) 3.62/1.83 TRUE 3.79/1.85 EOF